
Design and Analysis of Algorithms

Mohammad GANJTABESH

mgtabesh@ut.ac.ir

School of Mathematics, Statistics and Computer Science,
University of Tehran,

Tehran, Iran.

Exact String Matching

Finding all occurrences of a pattern in a text.

Native Algorithm (Brute Force)

Rabin-Karp

Finite State Automata

Knuth-Morris-Pratt (KMP)

Notaion and Problem Definition

Σ: a given alphabet

T : an string over Σn (T r1 ¨ ¨ ¨ ns)

P: an string over Σm (Pr1 ¨ ¨ ¨ms)

ε: empty string of length 0

xy : concatenation of strings x and y

w < x : w is a prefix of x

w = x : w is a suffix of x

Tk : the prefix T r1 ¨ ¨ ¨ ks of T

Pk : the prefix Pr1 ¨ ¨ ¨ ks of P

T0 “ P0 “ ε

Definition

A shift s is valid iff 0 ď s ď n ´ m and Pr1 ¨ ¨ ¨ms “ T rs ` 1 ¨ ¨ ¨ s ` ms.

String matching problem: find all valid shifts.

Native Algorithm (Brute Force)

Match the pattern string against the input string character by
character.

When there is a mismatch, shift the whole pattern string right
by one character and start again at the beginning.

Time Complexity: Θppn ´ m ` 1q ˆ mq (Consider T “ an and
P “ am).

String Matching property

Lemma

Suppose that x , y , and z are strings such that x = z and y = z . If
|x | ď |y |, then x = y . If |x | ě |y |, then y = x . If |x | “ |y |, then
x “ y .

Rabin-Karp Algorithm

Performs well in practice and can be used in two-dimensional
pattern matching.

Uses elementary number-theoretic notions (the equivalence of
two numbers modulo a third number).

Assume that each character is a digit in radix-d notation,
where d “ |Σ|.

A string of length k can be seen as a length-k number.

Rabin-Karp Algorithm

Let p denotes the corresponding decimal value of pattern
Pr1 ¨ ¨ ¨ms.

Similarly, ts denotes the decimal value of length-m substring
T rs ` 1 ¨ ¨ ¨ s ` ms, for s “ 0, 1, ¨ ¨ ¨ , n ´ m.

Certainly, ts “ p iff T rs ` 1 ¨ ¨ ¨ s ` ms “ Pr1 ¨ ¨ ¨ms; thus, s is
a valid shift iff ts “ p.

If we could compute p in time Θpmq and all the ts values in a
total of Θpn ´ m ` 1q time, then we could determine all valid
shifts s in time Θpmq ` Θpn ´ m ` 1q “ Θpnq by comparing p
with each of the ts ’s.

Rabin-Karp Algorithm

We can compute p in time Θpmq using Horners rule:

p “ Prms`dpPrm´1s`dpPrm´2s`¨ ¨ ¨`dpPr2s`dPr1sq ¨ ¨ ¨ qq.

The value t0 can be similarly computed from T r1 ¨ ¨ ¨ms in
time Θpmq.

To compute the remaining values t1, t2, ¨ ¨ ¨ , tn´m in time
Θpn ´ mq, it suffices to observe that ts`1 can be computed
from ts in constant time, since

ts`1 “ dpts ´ dm´1T rs ` 1sq ` T rs ` m ` 1s.

What happens if p and ts become too large to work with
conveniently?

Rabin-Karp Algorithm
What happens if p and ts become too large?
Solution:

Compute p and all tss modulo a suitable modulus q.

For a d-ary alphabet t0, 1, ¨ ¨ ¨ , d ´ 1u, we choose q so that dq
fits within a computer word and adjust the recurrence equation
to work modulo q (where h ” dm´1pmod qq):

ts`1 “ pdpts ´ hT rs ` 1sq ` T rs ` m ` 1sq mod q.

Rabin-Karp Algorithm

Since the computation of p, t0, and all values t1, t2, ¨ ¨ ¨ , tn´m

can be performed modulo q, we can compute p modulo q in
Θpmq time and all the ts ’s modulo q in Θpn ´ m ` 1q time.

Another Problem: working modulo q is not perfect, since
ts ” p pmod qq does not imply that ts “ p.

On the other hand, if ts ı p pmod qq, then we definitely have
that ts ‰ p, so that shift s is invalid.

We can thus use the test ts ” p pmod qq as a fast heuristic
test to rule out invalid shifts s.

Rabin-Karp Algorithm

Any shift s for which ts ” p pmod qq must be tested further
to see if s is really valid or we just have a spurious hit.

This testing can be done by explicitly checking the condition
Pr1 ¨ ¨ ¨ms “ T rs ` 1 ¨ ¨ ¨ s ` ms.

If q is large enough, then we can hope that spurious hits occur
infrequently enough that the cost of the extra checking is low.

Rabin-Karp Algorithm

Finite State Automata (Review)

Definition (Finite automata)

A finite automaton M is a 5-tuple pQ, q0,A,Σ, δq, where

Q is a finite set of states, q0 P Q is the start state,

A Ď Q is a distinguished set of accepting states,

Σ is a finite input alphabet,

δ is a function from Q ˆ Σ into Q, called the transition
function of M.

The finite automaton begins in state q0 and reads the
characters of its input string one at a time.

If the automaton is in state q and reads input character a, it
moves (makes a transition) from state q to state δpq, aq.

Whenever its current state q is a member of A, the machine
M is said to have accepted the string read so far. An input
that is not accepted is said to be rejected.

Finite State Automata (Review)

A finite automaton M induces a function ϕ, called the
final-state function, from Σ˚ to Q such that ϕpwq is the state
that M ends up in after scanning the string w .

Thus, M accepts a string w if and only if ϕpwq P A.

The function ϕ is defined by the recursive relation

ϕpεq “ q0,

ϕpwaq “ δpϕpwq, aq for w P Σ˚, a P Σ.

String-Matching Automata

Definition (suffix function)

A suffix function σ corresponding to pattern Pr1 ¨ ¨ ¨ms is a
mapping from Σ˚ to t0, 1, ¨ ¨ ¨ ,mu such that σpxq is the length of
the longest prefix of P that is a suffix of x :

σpxq “ maxtk | Pk = xu.

Example

For the pattern P “ ab, we have σpεq “ 0, σpccacaq “ 1, and
σpccabq “ 2.

For a pattern P of length m, we have σpxq “ m iff P = x .

If x = y , then σpxq ď σpyq (following from the definition of
the suffix function).

String-Matching Automata

Constructing the String-Matching Automata

For a given pattern Pr1 ¨ ¨ ¨ms, the corresponding string-matching
automaton would be as follows:

Q “ t0, 1, ¨ ¨ ¨ ,mu.

q0 “ 0.

A “ tmu.

The transition function δ is defined by the following equation,
for any state q and character a:

δpq, aq “ σpPqaq

String-Matching Automata

The machine maintains as an invariant of its operation that
ϕpTi q “ σpTi q (will be proved later).

This means that after scanning Ti , the machine is in state
ϕpTi q “ q, where q “ σpTi q is the length of the longest suffix
of Ti that is also a prefix of the pattern P.

If the next character scanned is T ri ` 1s “ a, then the
machine should make a transition to state σpTi`1q “ σpTiaq.

The later proof shows that σpTiaq “ σpPqaq, i.e. to compute
the length of the longest suffix of Tia that is a prefix of P, we
can compute the longest suffix of Pqa that is a prefix of P.

Therefore, setting δpq, aq “ σpPqaq maintains the desired
invariant.

String-Matching Automata (matcher)

If the string-matching automaton is constructed (as a preprocess)
for the pattern P, then the following algorithm could be used as a
matcher.

Time Complexity: Θpnq.

String-Matching Automata (transition function)

The following procedure computes the transition function δ from a
given pattern Pr1 ¨ ¨ ¨ms.

Time Complexity: Opm3|Σ|q.

This Complexity can be reduced to Opm|Σ|q. How?

String-Matching Automata (Correctness)

Lemma (Suffix-function inequality)

For any string x and character a, we have σpxaq ď σpxq ` 1.

Proof.

Let r “ σpxaq and follow the figure...

String-Matching Automata (Correctness)

Lemma (Suffix-function recursion)

For any string x and character a, if q “ σpxq, then
σpxaq “ σpPqaq.

Proof.

Let r “ σpxaq and follow the figure...

String-Matching Automata (Correctness)

Theorem
If ϕ is the final-state function of a string-matching automaton for a given

pattern P and T r1 ¨ ¨ ¨ ns is an input text for the automaton, then

ϕpTi q “ σpTi q for i “ 0, 1, ¨ ¨ ¨ , n.

Proof.
The proof is by induction on i . For i “ 0, the theorem is trivially true, since
T0 “ ε. Thus, ϕpT0q “ 0 “ σpT0q. Now, we assume that ϕpTi q “ σpTi q and
prove that ϕpTi`1q “ σpTi`1q. Let q denotes ϕpTi q, and let a denotes
T ri ` 1s. Then:

ϕpTi`1q “ ϕpTiaq (by the definitions of Ti`1 and a)

“ δpϕpTi q, aq (by the definition of ϕ)

“ δpq, aq (by the definition of q)

“ σpPqaq (by the definition of δ)

“ σpTiaq (by previous lemmas and induction)

“ σpTi`1q (by the definition of Ti`1).

The Knuth-Morris-Pratt (KMP) algorithm

This algorithm avoids the computation of the costly transition
function δ.

Instead, it uses an auxiliary function πr1 ¨ ¨ ¨ms (called Prefix
Function), precomputed from the pattern in time Θpmq.

For any state q “ 0, 1, ¨ ¨ ¨ ,m and any character a P Σ, the
value πrqs contains the information that is independent of a
and is needed to compute δpq, aq.

The prefix function π for a pattern encapsulates knowledge
about how the pattern matches against shifts of itself.

The array π has only m entries, whereas δ has m ˆ |Σ| entries.

Its matching time would be Θpnq.

KMP Algorithm: Motivation

KMP Algorithm: Motivation

General Question

Given that pattern characters Pr1 ¨ ¨ ¨ qs match text characters
T rs ` 1 ¨ ¨ ¨ s ` qs, what is the least shift s 1 ą s such that

Pr1 ¨ ¨ ¨ ks “ T rs 1 ` 1 ¨ ¨ ¨ s 1 ` ks,

where s 1 ` k “ s ` q?

Such a shift s 1 is the first shift greater than s that is not
necessarily invalid due to our knowledge of T rs ` 1 ¨ ¨ ¨ s ` qs.

In the best case, we have that s 1 “ s ` q, and shifts
s ` 1, s ` 2, ¨ ¨ ¨ , s ` q ´ 1 are all immediately ruled out.

In any case, at the new shift s 1 we don’t need to compare the
first k characters of P with the corresponding characters of
T , since we are guaranteed that they match.

KMP Algorithm: prefix function

The necessary information can be precomputed by comparing
the pattern against itself.

Since T rs 1 ` 1 ¨ ¨ ¨ s 1 ` ks is part of the known portion of the
text, it is a suffix of the string Pq.

Equation Pr1 ¨ ¨ ¨ ks “ T rs 1 ` 1 ¨ ¨ ¨ s 1 ` ks can therefore be
interpreted as asking for the largest k ă q such that Pk = Pq.

Then, s 1 “ s ` pq ´ kq is the next potentially valid shift.

Formal definition of prefix function

Given a pattern Pr1 ¨ ¨ ¨ms, the prefix function for the pattern P is
the function π : t1, 2, ¨ ¨ ¨ ,mu ÞÑ t0, 1, ¨ ¨ ¨ ,m ´ 1u such that

πrqs “ maxtk | k ă q and Pk = Pqu.

One again: πrqs is the length of the longest prefix of P that is a
suffix of Pq.

KMP Algorithm: prefix function

KMP Algorithm: Matcher

Time Complexity: Θpnq (Amortized analysis?)

KMP Algorithm: Computing Prefix Function

Time Complexity: Θpmq (Amortized analysis?)

Exercises

1. Show how to extend the Rabin-Karp method to handle the problem of looking
for a given m ˆ m pattern in an n ˆ n array of characters. (The pattern may be
shifted vertically and horizontally, but it may not be rotated)

2. Draw a state-transition diagram for a string-matching automaton for the pattern
ababbabbababbababbabb over the alphabet ta, bu.

3. Given two patterns P and P 1, describe how to construct a finite automaton that
determines all occurrences of either pattern. Try to minimize the number of
states in your automaton.

4. Compute the prefix function π for the pattern ababbabbabbababbabb when the
alphabet is Σ “ ta, bu.

5. Give a linear-time algorithm to determine if a text T is a cyclic rotation of
another string T 1 . For example, arc and car are cyclic rotations of each other.

6. Give an efficient algorithm for computing the transition function δ for the
string-matching automaton corresponding to a given pattern P. Your algorithm
should run in time Opm|Σ|q. (Hint: Prove that δpq, aq “ δpπrqs, aq if q “ m or
Prq ` 1s ‰ a.)

End.

