Design and Analysis of Algorithms

Mohammad GANJTABESH

mgtabesh@ut.ac.ir

School of Mathematics, Statistics and Computer Science,
University of Tehran,
Tehran, Iran.

Exact String Matching

Finding all occurrences of a pattern in a text.

text T ‘alb[c|a[b|ala|b[c]a]b[alc]

pattern P L HEHB

Native Algorithm (Brute Force)
Rabin-Karp

Finite State Automata
Knuth-Morris-Pratt (KMP)

Notaion and Problem Definition

Y : a given alphabet @ w [x: wis a prefix of x

T: an string over X" (T[1---n]) e w I x: wis a suffix of x

P: an string over ¥ (P[1--- m]) @ Ty: the prefix T[1---k] of T
€: empty string of length 0 @ Py: the prefix P[1--- k] of P
xy: concatenation of strings x and y @ To=Py=c¢

Definition
A shift sisvalid iff 0Ss<n—mand P[1---m|]=T[s+1---s+ m].
String matching problem: find all valid shifts.

text T \alblc abaablclalblalc'

Nl
pattern P i EEHE

Native Algorithm (Brute Force)

@ Match the pattern string against the input string character by
character.

@ When there is a mismatch, shift the whole pattern string right
by one character and start again at the beginning.

NAIVE-STRING-MATCHER(T, P)
1 m+ length[T)

2 n— length[P]

3 fors— Oton—m

4 doif P[ll.m|=T[s+ 1.5 + m]

5 then Print “pattern occurs with shift &7
|T|C|ﬂ|a|b|0\ alefafafbec| [afcafa]n]c] [a]c[a[a]b]c]

(a) (b} (c) (d)

Time Complexity: ©((n— m + 1) x m) (Consider T = a" and
P =am).

String Matching property

Lemma

Suppose that x, y, and z are strings such that x Jz andy J z. If
Ix| <|yl|, then x O y. If x| = |y|, then y T x. If |x| = |y|, then

X =Y.

g

(a)

x x x
| | I:% | I:%
Y y y
X . X .
T
() ©

Rabin-Karp Algorithm

@ Performs well in practice and can be used in two-dimensional
pattern matching.

@ Uses elementary number-theoretic notions (the equivalence of
two numbers modulo a third number).

@ Assume that each character is a digit in radix-d notation,
where d = |X]|.

@ A string of length k can be seen as a length-k number.

Rabin-Karp Algorithm

Let p denotes the corresponding decimal value of pattern
P[1---m].

Similarly, ts denotes the decimal value of length-m substring
T[s+1---s+m], fors=0,1,--- ., n—m.

Certainly, t; = piff T[s+1---s+ m] = P[1---m]; thus, s is
a valid shift iff ts = p.

If we could compute p in time ©(m) and all the ts values in a
total of ©(n — m + 1) time, then we could determine all valid
shifts s in time ©(m) + ©(n— m + 1) = ©(n) by comparing p
with each of the tg's.

Rabin-Karp Algorithm
e We can compute p in time ©(m) using Horners rule:

p = P[m]+d(P[m—1]+d(P[m—2]+---+d(P[2]+dP[1])---)).

@ The value ty can be similarly computed from T[1---m] in
time ©(m).
@ To compute the remaining values ty, to, -« , th—m in time

©(n — m), it suffices to observe that ts;1 can be computed
from ts in constant time, since

tor1 = d(ts —d™ I T[s +1]) + T[s + m + 1].

Rabin-Karp Algorithm

@ What happens if p and ts become too large?

@ Solution:
o Compute p and all tss modulo a suitable modulus g.

[2[3]s[s[ol2[B[aTa[]2 e [7[3]o]o[2]1]

mod 13

For a d-ary alphabet {0,1,--- ,d — 1}, we choose g so that dq
fits within a computer word and adjust the recurrence equation
to work modulo g (where h = d™!(mod q)):

tsy1 = (d(ts = hT[s + 1]) + T[s + m + 1]) mod q.

old new old new
high-order low-order high-order low-order
digit shift digit

digil\ digit \ |

31141115 14152 = (31415 - 3-10000)-10 + 2 (mod 13)
= (7-3-3)10+2 (mod 13)

(a+b)mod @ = ((amod Q) + (b mod Q) mod Q L = 8 (mod 13)
8 |

(a*b)ymod Q = ((amod Q) * (b mod Q)) mod Q [7

Rabin-Karp Algorithm

@ Since the computation of p, tp, and all values t1,tp, -+ , them
can be performed modulo g, we can compute p modulo g in
©(m) time and all the t;'s modulo g in ©(n — m + 1) time.

@ Another Problem: working modulo ¢ is not perfect, since
ts = p (mod q) does not imply that t; = p.

@ On the other hand, if t; # p (mod q), then we definitely have
that ts # p, so that shift s is invalid.

@ We can thus use the test ts = p (mod q) as a fast heuristic
test to rule out invalid shifts s.

Rabin-Karp Algorithm

@ Any shift s for which ts = p (mod q) must be tested further
to see if s is really valid or we just have a spurious hit.
1-2: '3 43 6. 78 9 10 11 12' 1314 15 16 17 1819

L [ssTo]2 s[5z [s[als[s 5] 2] 1]

lglflalnloll\%elﬂnholnéofﬁl

valid spurious
match hit

@ This testing can be done by explicitly checking the condition
P[l---m|=T[s+1 s+ m].

e If g is large enough, then we can hope that spurious hits occur
infrequently enough that the cost of the extra checking is low.

Rabin-Karp Algorithm

RABIN-KARP-MATCHER(T, P, d, q)

1 n <« length[T]

2 m <« length[P]

3 h«<d" 'modgq

4 p«0

5 1«0

6 fori « ltom > Preprocessing.
7/ do p < (dp + P[i]) mod ¢

8 ty <« (dty + T[i]) mod ¢

9 fors «0ton—m > Matching.
10 doif p =1
11 thenif P[1..m]=T[s+1..5 +m]
12 then print “Pattern occurs with shift” s
13 ifs<n-m

14 thent, .| < (d(t; =T[s + 1]h) + T[s + m + 1]) mod ¢

Finite State Automata (Review)

Definition (Finite automata)

A finite automaton M is a 5-tuple (Q, go, A, X,), where
@ Q@ is a finite set of states, gg € @ is the start state,
@ AC @ is a distinguished set of accepting states,

@ X is a finite input alphabet,

o

4 is a function from @ x ¥ into Q, called the transition
function of M.

@ The finite automaton begins in state gp and reads the
characters of its input string one at a time.

@ If the automaton is in state g and reads input character a, it
moves (makes a transition) from state g to state d(q, a).
@ Whenever its current state g is a member of A, the machine

M is said to have accepted the string read so far. An input
that is not accepted is said to be rejected.

Finite State Automata (Review)

o A finite automaton M induces a function ¢, called the
final-state function, from X* to Q such that p(w) is the state
that M ends up in after scanning the string w.

@ Thus, M accepts a string w if and only if p(w) € A.
@ The function ¢ is defined by the recursive relation

e(€) = o,
p(wa) = 0(e(w),a) for weX* aeX.

a
input b <
state a b (J’(\()
0 10 ~—a—
1 0|0 b

String-Matching Automata

Definition (suffix function)

A suffix function o corresponding to pattern P[1---m] is a
mapping from X* to {0,1,--- , m} such that o(x) is the length of
the longest prefix of P that is a suffix of x:

o(x) = max{k | Px J x}.

Example

For the pattern P = ab, we have o(¢) =0, o(ccaca) = 1, and
o(ccab) = 2.

e For a pattern P of length m, we have o(x) = m iff P 3 x.

e If x Oy, then o(x) < o(y) (following from the definition of
the suffix function).

String-Matching Automata
Constructing the String-Matching Automata

For a given pattern P[1---m], the corresponding string-matching
automaton would be as follows:

e @=1{0,1,---,m}.

@ go=0.

o A= {m}.

@ The transition function § is defined by the following equation,
for any state g and character a:

d(q,a) = 0(Pqa)

- a

6,\/.:,"' A 2 3
(o>_a>4(1)_b>(z>‘_a>@_b>(42_:>§)_c>@>_a>o

mput

[

staite a b ¢

b

3145 678 91011

— abababacaba

2
4

i

TI[i]
state (T)

234545 6ff2 3

0

0

0
2

4|0

200

1
1

3

7

(c)

()

String-Matching Automata

The machine maintains as an invariant of its operation that
©(T;) = o(T;) (will be proved later).

This means that after scanning T;, the machine is in state
©(T;) = q, where g = o(T;) is the length of the longest suffix
of T; that is also a prefix of the pattern P.

If the next character scanned is T|[i + 1] = a, then the
machine should make a transition to state o(T;+1) = o(T;a).
The later proof shows that o(T;a) = o(Pga), i.e. to compute
the length of the longest suffix of T;a that is a prefix of P, we
can compute the longest suffix of Pga that is a prefix of P.

Therefore, setting d(q, a) = 0(Pga) maintains the desired
invariant.

String-Matching Automata (matcher)

If the string-matching automaton is constructed (as a preprocess)
for the pattern P, then the following algorithm could be used as a
matcher.

FINITE-AUTOMATON-MATCHER (T, 8, m)
1 n « length[T]

2 g«0

3 fori <« 1ton

4 do g « 8(q,TIi])
5 ifg=m

6 then print “Pattern occurs with shift” i — m

e Time Complexity: ©(n).

String-Matching Automata (transition function)

The following procedure computes the transition function d from a
given pattern P[1---m].

COMPUTE-TRANSITION-FUNCTION(P, X)
1 m <« length[P]

2 forg «~Otom

3 do for each charactera € £

4 do k < min(m + 1,q +2)
5 repeat k < k — 1

6 until P, 2 P,a

7 8(q,a) <k

8 returné

o Time Complexity: O(m3|X|).
@ This Complexity can be reduced to O(m|X|). How?

String-Matching Automata (Correctness)

Lemma (Suffix-function inequality)

For any string x and character a, we have o(xa) < o(x) + 1.

Proof.

Let r = o(xa) and follow the figure...

String-Matching Automata (Correctness)

Lemma (Suffix-function recursion)

For any string x and character a, if ¢ = o(x), then
o(xa) = o(Pga).

Proof.

Let r = o(xa) and follow the figure...

String-Matching Automata (Correctness)

Theorem

If @ is the final-state function of a string-matching automaton for a given
pattern P and T[1---n| is an input text for the automaton, then
o(Ti) = o(T;) fori=0,1,--- ,n.

Proof.

The proof is by induction on i. For i = 0, the theorem is trivially true, since
To = €. Thus, ¢(To) =0 = o(To). Now, we assume that ¢(T;) = o(T;) and
prove that ¢(Ti+1) = o(Ti+1). Let g denotes ©(T;), and let a denotes

T[i + 1]. Then:

o(Ti+1) = (Tia) (by the definitions of Tjy1 and a)
= (e(Ti),a) (by the definition of ¢)
4(q, a) (by the definition of q)
= o(Pga) (by the definition of ¢)
o(T;a) (by previous lemmas and induction)
= o(Tis1) (by the definition of Tji1).

The Knuth-Morris-Pratt (KMP) algorithm

This algorithm avoids the computation of the costly transition
function 4.

Instead, it uses an auxiliary function 7[1--- m] (called Prefix
Function), precomputed from the pattern in time ©(m).

For any state g = 0,1,--- , m and any character a € ¥, the
value 7[q] contains the information that is independent of a
and is needed to compute 4(q, a).

The prefix function 7 for a pattern encapsulates knowledge
about how the pattern matches against shifts of itself.

The array m has only m entries, whereas 6 has m x || entries.

Its matching time would be ©(n).

KMP Algorithm: Motivation

[pa]c[p[afblabfaalo|clblab] T

[[T1T17%
— = alblalelal[a] »
——g—

(a)

[palc[p|a[blabla]alb|clbla]b| T

$=s+2 _[a[blalbla]c|a] P
«—k —>

(b)

[a|p[afbla] P,
1]
[alp]a] P

(c)

KMP Algorithm: Motivation

General Question

Given that pattern characters P[1--- g| match text characters
T[s+1---s+ q], what is the least shift s’ > s such that

P[l---k]=T[s +1---s" + k],

where s’ + k = s+ g?

@ Such a shift s is the first shift greater than s that is not
necessarily invalid due to our knowledge of T[s+1---s+ q].

@ In the best case, we have that s’ = s + g, and shifts
s+1,s+2,---,5s4+ g—1 are all immediately ruled out.

@ In any case, at the new shift s’ we don't need to compare the

first k characters of P with the corresponding characters of
T, since we are guaranteed that they match.

KMP Algorithm: prefix function

@ The necessary information can be precomputed by comparing
the pattern against itself.

@ Since T[s' +1---s" + k] is part of the known portion of the
text, it is a suffix of the string Pg.

e Equation P[1---k] = T[s'+1---s" + k] can therefore be
interpreted as asking for the largest k < g such that P, 1 Pq.

@ Then, s’ = s+ (g — k) is the next potentially valid shift.

Formal definition of prefix function

Given a pattern P[1--- m]|, the prefix function for the pattern P is
the function 7 : {1,2,--- ,m} — {0,1,--- , m — 1} such that

m[q] = max{k | k < g and Py O Pg}.

One again: 7[q] is the length of the longest prefix of P that is a
suffix of Pg.

KMP Algorithm: prefix function

i|1]12(3]|4 6 81910
Pli] lajb|la|b|a|b b a
il [0]0f1]|2(3]|4 6 1

(a)
Py Ia[b|a]b|a|bla|£c a
[[1]
Pg la|pla[bla|b|a b
P, |a b
Pz a b
Po gia b

a b c a

a b aboca

n8]=6

(6] =4

4] =2

n2]=0

KMP Algorithm: Matcher

KMP-MATCHER(T, P)

1 n <« length[T]
2 m <« length[P]
3 1w < COMPUTE-PREFIX-FUNCTION(P)
4 g« 0 > Number of characters matched.
5 fori « 1ton > Scan the text from left to right.
6 do while ¢ > O and P[g + 1] # T'[i]
7/ do g « m[q] > Next character does not match.
8 if Plg +1]1=TIi]
9 theng «— ¢ +1 > Next character matches.

10 ifg=m > Is all of P matched?

11 then print “Pattern occurs with shift” i — m

12 q « m(q] > Look for the next match.

e Time Complexity: ©(n) (Amortized analysis?)

KMP Algorithm: Computing Prefix Function

COMPUTE-PREFIX-FUNCTION (P)

1 m <« length[P]

2 mw[l] «0

3 k«0

4 forqg «2tom

5 do while £ > O and P[k + 1] # P[q]
6 do k « m[k]

7 if Pk + 1] = Plq]

8 then k « k + 1

9 nlq) « k
10 return

e Time Complexity: ©(m) (Amortized analysis?)

Exercises

Show how to extend the Rabin-Karp method to handle the problem of looking
for a given m x m pattern in an n x n array of characters. (The pattern may be
shifted vertically and horizontally, but it may not be rotated)

Draw a state-transition diagram for a string-matching automaton for the pattern
ababbabbababbababbabb over the alphabet {a, b}.

Given two patterns P and P’, describe how to construct a finite automaton that
determines all occurrences of either pattern. Try to minimize the number of
states in your automaton.

Compute the prefix function 7 for the pattern ababbabbabbababbabb when the
alphabet is ¥ = {a, b}.

Give a linear-time algorithm to determine if a text T is a cyclic rotation of
another string T’ . For example, arc and car are cyclic rotations of each other.

Give an efficient algorithm for computing the transition function ¢ for the
string-matching automaton corresponding to a given pattern P. Your algorithm
should run in time O(m|X|). (Hint: Prove that §(q,a) = §(r[q],a) if g = mor
Plg+1] # a.)

End.

