

Design and Analysis of Algorithms

Mohammad GANJTABESH

mgtabesh@ut.ac.ir

School of Mathematics, Statistics and Computer Science, University of Tehran, Tehran, Iran.

Exact String Matching

Finding all occurrences of a pattern in a text.

- Native Algorithm (Brute Force)
- Rabin-Karp
- Finite State Automata
- Knuth-Morris-Pratt (KMP)

Notaion and Problem Definition

- Σ : a given alphabet
- **T**: an string over Σ^n ($T[1 \cdots n]$)
- **P**: an string over $\Sigma^m (P[1 \cdots m])$
- ϵ : empty string of length 0
- xy: concatenation of strings x and y

- $w \sqsubset x$: w is a prefix of x
- $w \sqsupset x$: w is a suffix of x
- T_k : the prefix $T[1 \cdots k]$ of T
- P_k : the prefix $P[1 \cdots k]$ of P
- $T_0 = P_0 = \epsilon$

Definition

A shift s is valid iff $0 \le s \le n - m$ and $P[1 \cdots m] = T[s + 1 \cdots s + m]$. String matching problem: find all valid shifts.

Native Algorithm (Brute Force)

- Match the pattern string against the input string character by character.
- When there is a mismatch, shift the whole pattern string right by one character and start again at the beginning.

```
NAIVE-STRING-MATCHER(T, P)

1 m \leftarrow length[T]

2 n \leftarrow length[P]

3 for s \leftarrow 0 to n - m

4 do if P[1..m] = T[s + 1..s + m]

5 then Print "pattern occurs with shift s"
```


Time Complexity: $\Theta((n - m + 1) \times m)$ (Consider $T = a^n$ and $P = a^m$).

String Matching property

Lemma

Suppose that x, y, and z are strings such that $x \sqsupset z$ and $y \sqsupset z$. If $|x| \le |y|$, then $x \sqsupset y$. If $|x| \ge |y|$, then $y \sqsupset x$. If |x| = |y|, then x = y.

- Performs well in practice and can be used in two-dimensional pattern matching.
- Uses elementary number-theoretic notions (the equivalence of two numbers modulo a third number).
- Assume that each character is a digit in radix-d notation, where $d = |\Sigma|$.
- A string of length k can be seen as a length-k number.

- Let p denotes the corresponding decimal value of pattern $P[1 \cdots m]$.
- Similarly, t_s denotes the decimal value of length-*m* substring $T[s+1\cdots s+m]$, for $s=0,1,\cdots,n-m$.
- Certainly, $t_s = p$ iff $T[s + 1 \cdots s + m] = P[1 \cdots m]$; thus, s is a valid shift iff $t_s = p$.
- If we could compute p in time $\Theta(m)$ and all the t_s values in a total of $\Theta(n m + 1)$ time, then we could determine all valid shifts s in time $\Theta(m) + \Theta(n m + 1) = \Theta(n)$ by comparing p with each of the t_s 's.

• We can compute p in time $\Theta(m)$ using Horners rule:

$$p = P[m] + d(P[m-1] + d(P[m-2] + \dots + d(P[2] + dP[1]) \dots)).$$

- The value t_0 can be similarly computed from $T[1 \cdots m]$ in time $\Theta(m)$.
- To compute the remaining values t_1, t_2, \dots, t_{n-m} in time $\Theta(n-m)$, it suffices to observe that t_{s+1} can be computed from t_s in constant time, since

$$t_{s+1} = d(t_s - d^{m-1}T[s+1]) + T[s+m+1].$$

- What happens if p and t_s become too large?
- Solution:
 - Compute p and all t_s s modulo a suitable modulus q.

For a *d*-ary alphabet {0,1,..., *d*-1}, we choose *q* so that *dq* fits within a computer word and adjust the recurrence equation to work modulo *q* (where *h* ≡ *d^{m-1}(mod q)*):

$$t_{s+1} = (d(t_s - hT[s+1]) + T[s+m+1]) mod q.$$

- Since the computation of p, t₀, and all values t₁, t₂, · · · , t_{n-m} can be performed modulo q, we can compute p modulo q in Θ(m) time and all the t_s's modulo q in Θ(n − m + 1) time.
- Another Problem: working modulo q is not perfect, since $t_s \equiv p \pmod{q}$ does not imply that $t_s = p$.
- On the other hand, if t_s ≠ p (mod q), then we definitely have that t_s ≠ p, so that shift s is invalid.
- We can thus use the test t_s ≡ p (mod q) as a fast heuristic test to rule out invalid shifts s.

 Any shift s for which t_s ≡ p (mod q) must be tested further to see if s is really valid or we just have a spurious hit.

- This testing can be done by explicitly checking the condition $P[1 \cdots m] = T[s + 1 \cdots s + m].$
- If q is large enough, then we can hope that spurious hits occur infrequently enough that the cost of the extra checking is low.

```
RABIN-KARP-MATCHER(T, P, d, q)
 1 n \leftarrow length[T]
 2 m \leftarrow length[P]
 3 h \leftarrow d^{m-1} \mod q
 4 p \leftarrow 0
 5 to \leftarrow 0
 6
    for i \leftarrow 1 to m
                                       ▷ Preprocessing.
 7
          do p \leftarrow (dp + P[i]) \mod q
 8
              t_0 \leftarrow (dt_0 + T[i]) \mod q
 9
     for s \leftarrow 0 to n - m \triangleright Matching.
          do if p = t_s
10
11
                then if P[1...m] = T[s+1...s+m]
                         then print "Pattern occurs with shift" s
12
13
              if s < n - m
14
                 then t_{s+1} \leftarrow (d(t_s - T[s+1]h) + T[s+m+1]) \mod q
```

Finite State Automata (Review)

Definition (Finite automata)

A finite automaton *M* is a 5-tuple $(Q, q_0, A, \Sigma, \delta)$, where

- Q is a finite set of states, $q_0 \in Q$ is the start state,
- $A \subseteq Q$ is a distinguished set of accepting states,
- Σ is a finite input alphabet,
- δ is a function from $Q \times \Sigma$ into Q, called the transition function of M.
- The finite automaton begins in state q₀ and reads the characters of its input string one at a time.
- If the automaton is in state q and reads input character a, it moves (makes a transition) from state q to state δ(q, a).
- Whenever its current state q is a member of A, the machine M is said to have accepted the string read so far. An input that is not accepted is said to be rejected.

Finite State Automata (Review)

- A finite automaton M induces a function φ, called the final-state function, from Σ* to Q such that φ(w) is the state that M ends up in after scanning the string w.
- Thus, *M* accepts a string *w* if and only if $\varphi(w) \in A$.
- The function φ is defined by the recursive relation

$$\begin{array}{lll} \varphi(\epsilon) &=& q_0, \\ \varphi(\textit{wa}) &=& \delta(\varphi(\textit{w}),\textit{a}) \text{ for } \textit{w} \in \Sigma^*, \textit{ a} \in \Sigma. \end{array}$$

String-Matching Automata

Definition (suffix function)

A suffix function σ corresponding to pattern $P[1 \cdots m]$ is a mapping from Σ^* to $\{0, 1, \cdots, m\}$ such that $\sigma(x)$ is the length of the longest prefix of P that is a suffix of x:

$$\sigma(x) = \max\{k \mid P_k \sqsupset x\}.$$

Example

For the pattern P = ab, we have $\sigma(\epsilon) = 0$, $\sigma(ccaca) = 1$, and $\sigma(ccab) = 2$.

- For a pattern P of length m, we have $\sigma(x) = m$ iff $P \sqsupset x$.
- If x □ y, then σ(x) ≤ σ(y) (following from the definition of the suffix function).

String-Matching Automata

Constructing the String-Matching Automata

For a given pattern $P[1 \cdots m]$, the corresponding string-matching automaton would be as follows:

- $Q = \{0, 1, \cdots, m\}.$
- $q_0 = 0.$
- $A = \{m\}.$
- The transition function δ is defined by the following equation, for any state q and character a:

$$\delta(q, a) = \sigma(P_q a)$$

input

(b)

(c)

String-Matching Automata

- The machine maintains as an invariant of its operation that $\varphi(T_i) = \sigma(T_i)$ (will be proved later).
- This means that after scanning *T_i*, the machine is in state φ(*T_i*) = *q*, where *q* = σ(*T_i*) is the length of the longest suffix of *T_i* that is also a prefix of the pattern *P*.
- If the next character scanned is T[i + 1] = a, then the machine should make a transition to state σ(T_{i+1}) = σ(T_ia).
- The later proof shows that σ(T_ia) = σ(P_qa), i.e. to compute the length of the longest suffix of T_ia that is a prefix of P, we can compute the longest suffix of P_qa that is a prefix of P.
- Therefore, setting $\delta(q, a) = \sigma(P_q a)$ maintains the desired invariant.

String-Matching Automata (matcher)

If the string-matching automaton is constructed (as a preprocess) for the pattern P, then the following algorithm could be used as a matcher.

FINITE-AUTOMATON-MATCHER (T, δ, m)

- 1 $n \leftarrow length[T]$ 2 $q \leftarrow 0$ 3 for $i \leftarrow 1$ to n4 do $q \leftarrow \delta(q, T[i])$ 5 if q = m6 then print "Pattern occurs with shift" i - m
- Time Complexity: $\Theta(n)$.

String-Matching Automata (transition function)

The following procedure computes the transition function δ from a given pattern $P[1 \cdots m]$.

```
COMPUTE-TRANSITION-FUNCTION (P, \Sigma)

1 m \leftarrow length[P]

2 for q \leftarrow 0 to m

3 do for each character a \in \Sigma

4 do k \leftarrow \min(m + 1, q + 2)

5 repeat k \leftarrow k - 1

6 until P_k \supseteq P_q a

7 \delta(q, a) \leftarrow k

8 return \delta
```

- Time Complexity: $O(m^3|\Sigma|)$.
- This Complexity can be reduced to $O(m|\Sigma|)$. How?

String-Matching Automata (Correctness)

Lemma (Suffix-function inequality)

For any string x and character a, we have $\sigma(xa) \leq \sigma(x) + 1$.

Proof. Let $r = \sigma(xa)$ and follow the figure... P_{r-1} a P_r

String-Matching Automata (Correctness)

Lemma (Suffix-function recursion)

For any string x and character a, if $q = \sigma(x)$, then $\sigma(xa) = \sigma(P_qa)$.

Proof.

String-Matching Automata (Correctness)

Theorem

If φ is the final-state function of a string-matching automaton for a given pattern P and $T[1 \cdots n]$ is an input text for the automaton, then $\varphi(T_i) = \sigma(T_i)$ for $i = 0, 1, \cdots, n$.

Proof.

The proof is by induction on *i*. For i = 0, the theorem is trivially true, since $T_0 = \epsilon$. Thus, $\varphi(T_0) = 0 = \sigma(T_0)$. Now, we assume that $\varphi(T_i) = \sigma(T_i)$ and prove that $\varphi(T_{i+1}) = \sigma(T_{i+1})$. Let *q* denotes $\varphi(T_i)$, and let *a* denotes T[i+1]. Then:

$$\begin{split} \varphi(T_{i+1}) &= \varphi(T_i a) & \text{(by the definitions of } T_{i+1} \text{ and } a) \\ &= \delta(\varphi(T_i), a) & \text{(by the definition of } \varphi) \\ &= \delta(q, a) & \text{(by the definition of } q) \\ &= \sigma(P_q a) & \text{(by the definition of } \delta) \\ &= \sigma(T_i a) & \text{(by previous lemmas and induction)} \\ &= \sigma(T_{i+1}) & \text{(by the definition of } T_{i+1}). \end{split}$$

The Knuth-Morris-Pratt (KMP) algorithm

- This algorithm avoids the computation of the costly transition function δ .
- Instead, it uses an auxiliary function $\pi[1 \cdots m]$ (called Prefix Function), precomputed from the pattern in time $\Theta(m)$.
- For any state q = 0, 1, · · · , m and any character a ∈ Σ, the value π[q] contains the information that is independent of a and is needed to compute δ(q, a).
- The prefix function π for a pattern encapsulates knowledge about how the pattern matches against shifts of itself.
- The array π has only m entries, whereas δ has $m \times |\Sigma|$ entries.
- Its matching time would be $\Theta(n)$.

KMP Algorithm: Motivation

(c)

KMP Algorithm: Motivation

General Question

Given that pattern characters $P[1 \cdots q]$ match text characters $T[s + 1 \cdots s + q]$, what is the least shift s' > s such that

$$P[1\cdots k] = T[s'+1\cdots s'+k],$$

where s' + k = s + q?

- Such a shift s' is the first shift greater than s that is not necessarily invalid due to our knowledge of T[s + 1...s + q].
- In the best case, we have that s' = s + q, and shifts $s + 1, s + 2, \dots, s + q 1$ are all immediately ruled out.
- In any case, at the new shift s' we don't need to compare the first k characters of P with the corresponding characters of T, since we are guaranteed that they match.

KMP Algorithm: prefix function

- The necessary information can be precomputed by comparing the pattern against itself.
- Since $T[s' + 1 \cdots s' + k]$ is part of the known portion of the text, it is a suffix of the string P_q .
- Equation P[1···k] = T[s' + 1···s' + k] can therefore be interpreted as asking for the largest k < q such that P_k □ P_q.
- Then, s' = s + (q k) is the next potentially valid shift.

Formal definition of prefix function

Given a pattern $P[1 \cdots m]$, the prefix function for the pattern P is the function $\pi : \{1, 2, \cdots, m\} \mapsto \{0, 1, \cdots, m-1\}$ such that

$$\pi[q] = \max\{k \mid k < q \text{ and } P_k \sqsupset P_q\}.$$

One again: $\pi[q]$ is the length of the longest prefix of P that is a suffix of P_q .

KMP Algorithm: prefix function

i	1	2	3	4	5	6	7	8	9	10
P[i]	a	b	a	b	a	b	a	b	С	a
$\pi[i]$	0	0	1	2	3	4	5	6	0	1

(a)

KMP Algorithm: Matcher

```
KMP-MATCHER(T, P)
 1 n \leftarrow length[T]
 2 m \leftarrow length[P]
 3 \pi \leftarrow \text{COMPUTE-PREFIX-FUNCTION}(P)
    a \leftarrow 0
                                             Number of characters matched.
 4
 5
    for i \leftarrow 1 to n
                                             \triangleright Scan the text from left to right.
 6
          do while q > 0 and P[q+1] \neq T[i]
 7
                  do a \leftarrow \pi[a]
                                             ▷ Next character does not match.
 8
             if P[q+1] = T[i]
 9
                then q \leftarrow q+1
                                    Next character matches.
                                          \triangleright Is all of P matched?
10
             if q = m
                then print "Pattern occurs with shift" i - m
11
12
                     q \leftarrow \pi[q]
                                        ▷ Look for the next match.
```

• Time Complexity: $\Theta(n)$ (Amortized analysis?)

KMP Algorithm: Computing Prefix Function

COMPUTE-PREFIX-FUNCTION(P)

1 $m \leftarrow length[P]$ $2 \pi[1] \leftarrow 0$ $3 k \leftarrow 0$ 4 for $q \leftarrow 2$ to m 5 do while k > 0 and $P[k+1] \neq P[q]$ 6 do $k \leftarrow \pi[k]$ 7 if P[k+1] = P[q]8 then $k \leftarrow k+1$ 9 $\pi[q] \leftarrow k$ 10 return π

• Time Complexity: $\Theta(m)$ (Amortized analysis?)

Exercises

- 1. Show how to extend the Rabin-Karp method to handle the problem of looking for a given $m \times m$ pattern in an $n \times n$ array of characters. (The pattern may be shifted vertically and horizontally, but it may not be rotated)
- 2. Draw a state-transition diagram for a string-matching automaton for the pattern ababbabbabbabbabbabb over the alphabet $\{a, b\}$.
- 3. Given two patterns *P* and *P'*, describe how to construct a finite automaton that determines all occurrences of either pattern. Try to minimize the number of states in your automaton.
- 5. Give a linear-time algorithm to determine if a text T is a cyclic rotation of another string T'. For example, *arc* and *car* are cyclic rotations of each other.
- 6. Give an efficient algorithm for computing the transition function δ for the string-matching automaton corresponding to a given pattern *P*. Your algorithm should run in time $O(m|\Sigma|)$. (Hint: Prove that $\delta(q, a) = \delta(\pi[q], a)$ if q = m or $P[q+1] \neq a$.)

End.