

Design and Analysis of Algorithms

Mohammad GANJTABESH

mgtabesh@ut.ac.ir

School of Mathematics, Statistics and Computer Science, University of Tehran, Tehran, Iran.

Exact String Matching

Finding all occurrences of a pattern in a text.

- Native Algorithm (Brute Force)
- Rabin-Karp
- Finite State Automata
- Knuth-Morris-Pratt (KMP)

Notaion and Problem Definition

- \bullet Σ : a given alphabet
- T: an string over Σ^{n} $(T[1 \cdots n])$
- P: an string over Σ^m $(P[1 \cdots m])$
- \bullet ϵ : empty string of length 0
- xy : concatenation of strings x and y
- \bullet $w \sqsubset x$: w is a prefix of x
- \bullet w $\neg x$: w is a suffix of x
- \bullet τ_k : the prefix τ [1 \cdots k] of τ
- P_k : the prefix $P[1 \cdots k]$ of P
- $T_0 = P_0 = \epsilon$

Definition

A shift s is valid iff $0 \le s \le n - m$ and $P[1 \cdots m] = T[s + 1 \cdots s + m]$. String matching problem: find all valid shifts.

Native Algorithm (Brute Force)

- Match the pattern string against the input string character by character.
- When there is a mismatch, shift the whole pattern string right by one character and start again at the beginning.

```
NAIVE-STRING-MATCHER(T, P)1 \t m \leftarrow length[T]2 n \leftarrow length[P]3 for s \leftarrow 0 to n-mdo if P[1..m] = T[s + 1..s + m]4
  5
              then Print "pattern occurs with shift s"
```


Time Complexity: $\Theta((n - m + 1) \times m)$ (Consider $T = a^n$ and $P = a^m$).

String Matching property

Lemma

Suppose that x, y, and z are strings such that $x \supseteq z$ and $y \supseteq z$. If $|x| \le |y|$, then $x \supset y$. If $|x| \ge |y|$, then $y \supset x$. If $|x| = |y|$, then $x = y$.

- Performs well in practice and can be used in two-dimensional pattern matching.
- Uses elementary number-theoretic notions (the equivalence of two numbers modulo a third number).
- Assume that each character is a digit in radix-d notation, where $d = |\Sigma|$.
- A string of length k can be seen as a length- k number.

- \bullet Let \boldsymbol{p} denotes the corresponding decimal value of pattern $P[1 \cdots m]$.
- \bullet Similarly, $t_{\rm s}$ denotes the decimal value of length-m substring $T[s + 1 \cdots s + m]$, for $s = 0, 1, \cdots, n - m$.
- Certainly, $t_s = p$ iff $T[s + 1 \cdots s + m] = P[1 \cdots m]$; thus, s is a valid shift iff $t_s = p$.
- **If** we could compute p in time $\Theta(m)$ and all the t_s values in a total of $\Theta(n - m + 1)$ time, then we could determine all valid shifts s in time $\Theta(m) + \Theta(n - m + 1) = \Theta(n)$ by comparing p with each of the t_s 's.

• We can compute p in time $\Theta(m)$ using Horners rule:

$$
p = P[m]+d(P[m-1]+d(P[m-2]+\cdots+d(P[2]+dP[1])\cdots)).
$$

- The value t_0 can be similarly computed from $T[1 \cdots m]$ in time $\Theta(m)$.
- To compute the remaining values t_1, t_2, \dots, t_{n-m} in time $\Theta(n - m)$, it suffices to observe that t_{s+1} can be computed from t_s in constant time, since

$$
t_{s+1} = d(t_s - d^{m-1}T[s+1]) + T[s+m+1].
$$

- What happens if p and t_s become too large?
- Solution:
	- Compute p and all t_s s modulo a suitable modulus q.

• For a d-ary alphabet $\{0, 1, \dots, d - 1\}$, we choose q so that dq fits within a computer word and adjust the recurrence equation to work modulo q (where $h \equiv d^{m-1} (mod\ q)$):

$$
t_{s+1}=\left(d\big(t_s-h\mathcal{T}[s+1]\big)+\mathcal{T}[s+m+1]\right) \text{ mod } q.
$$

- Since the computation of p, t_0 , and all values t_1, t_2, \dots, t_{n-m} can be performed modulo q , we can compute p modulo q in $\Theta(m)$ time and all the t_s 's modulo q in $\Theta(n - m + 1)$ time.
- Another Problem: working modulo q is not perfect, since $t_s \equiv p \pmod{q}$ does not imply that $t_s = p$.
- On the other hand, if $t_s \neq p \pmod{q}$, then we definitely have that $t_s \neq p$, so that shift s is invalid.
- We can thus use the test $t_s \equiv p \pmod{q}$ as a fast heuristic test to rule out invalid shifts s.

• Any shift s for which $t_s \equiv p \pmod{q}$ must be tested further to see if s is really valid or we just have a spurious hit.

- This testing can be done by explicitly checking the condition $P[1 \cdots m] = T[s + 1 \cdots s + m].$
- \bullet If q is large enough, then we can hope that spurious hits occur infrequently enough that the cost of the extra checking is low.

```
RABIN-KARP-MATCHER(T, P, d, q)1 n \leftarrow length[T]2 m \leftarrow length[P]3 h \leftarrow d^{m-1} \mod q4 p \leftarrow 05\quad t_0 \leftarrow 06 for i \leftarrow 1 to m
                                           \triangleright Preprocessing.
 \overline{7}do p \leftarrow (dp + P[i]) \text{ mod } q8
               t_0 \leftarrow (dt_0 + T[i]) \text{ mod } q9
     for s \leftarrow 0 to n - m \triangleright Matching.
           do if p = t_s10
11
                  then if P[1..m] = T[s + 1..s + m]12
                           then print "Pattern occurs with shift" s
13
               if s < n-m14
                  then t_{s+1} \leftarrow (d(t_s - T[s + 1]h) + T[s + m + 1]) \text{ mod } q
```
Finite State Automata (Review)

Definition (Finite automata)

A finite automaton M is a 5-tuple $(Q, q_0, A, \Sigma, \delta)$, where

- Q is a finite set of states, $q_0 \in Q$ is the start state,
- \bullet $A \subseteq Q$ is a distinguished set of accepting states,
- \bullet Σ is a finite input alphabet,
- \bullet δ is a function from $Q \times \Sigma$ into Q, called the transition function of M.
- \bullet The finite automaton begins in state q_0 and reads the characters of its input string one at a time.
- \bullet If the automaton is in state q and reads input character a , it moves (makes a transition) from state q to state $\delta(q, a)$.
- Whenever its current state q is a member of A, the machine M is said to have accepted the string read so far. An input that is not accepted is said to be rejected.

Finite State Automata (Review)

- A finite automaton M induces a function φ , called the final-state function, from Σ^* to Q such that $\varphi(w)$ is the state that M ends up in after scanning the string w .
- Thus, M accepts a string w if and only if $\varphi(w) \in A$.
- \bullet The function φ is defined by the recursive relation

$$
\varphi(\epsilon) = q_0,
$$

\n
$$
\varphi(wa) = \delta(\varphi(w), a) \text{ for } w \in \Sigma^*, a \in \Sigma.
$$

String-Matching Automata

Definition (suffix function)

A suffix function σ corresponding to pattern $P[1 \cdots m]$ is a mapping from Σ^* to $\{0, 1, \cdots, m\}$ such that $\sigma(x)$ is the length of the longest prefix of P that is a suffix of x :

$$
\sigma(x) = \max\{k \mid P_k \sqsupset x\}.
$$

Example

For the pattern $P = ab$, we have $\sigma(\epsilon) = 0$, $\sigma(ccaca) = 1$, and $\sigma(ccab) = 2.$

- For a pattern P of length m, we have $\sigma(x) = m$ iff $P \rightharpoonup x$.
- If $x \rightharpoonup y$, then $\sigma(x) \leq \sigma(y)$ (following from the definition of the suffix function).

String-Matching Automata

Constructing the String-Matching Automata

For a given pattern $P[1 \cdots m]$, the corresponding string-matching automaton would be as follows:

- $Q = \{0, 1, \cdots, m\}.$
- $q_0 = 0$.
- $A = \{m\}.$
- The transition function δ is defined by the following equation, for any state q and character a :

$$
\delta(q,a)=\sigma(P_q a)
$$

input

 (b)

 (c)

String-Matching Automata

- The machine maintains as an invariant of its operation that $\varphi(T_i) = \sigma(T_i)$ (will be proved later).
- This means that after scanning \mathcal{T}_i , the machine is in state $\varphi(T_i) = q$, where $q = \sigma(T_i)$ is the length of the longest suffix of T_i that is also a prefix of the pattern P .
- If the next character scanned is $T[i + 1] = a$, then the machine should make a transition to state $\sigma(T_{i+1}) = \sigma(T_i a)$.
- The later proof shows that $\sigma(T_i a) = \sigma(P_a a)$, i.e. to compute the length of the longest suffix of T_i a that is a prefix of P, we can compute the longest suffix of P_a a that is a prefix of P.
- Therefore, setting $\delta(q, a) = \sigma(P_a a)$ maintains the desired invariant.

String-Matching Automata (matcher)

If the string-matching automaton is constructed (as a preprocess) for the pattern P, then the following algorithm could be used as a matcher.

FINITE-AUTOMATON-MATCHER (T, δ, m)

- 1 $n \leftarrow length[T]$ 2 $q \leftarrow 0$ 3 for $i \leftarrow 1$ to n $\overline{4}$ $\mathbf{do} q \leftarrow \delta(q, T[i])$ 5 if $q = m$ 6 then print "Pattern occurs with shift" $i - m$
- **Time Complexity:** $\Theta(n)$.

String-Matching Automata (transition function)

The following procedure computes the transition function δ from a given pattern $P[1 \cdots m]$.

```
COMPUTE-TRANSITION-FUNCTION(P, \Sigma)m \leftarrow length[P]\overline{2}for q \leftarrow 0 to m
\overline{\mathbf{3}}do for each character a \in \Sigma4567\mathbf{d}\mathbf{o} k \leftarrow \min(m+1, q+2)repeat k \leftarrow k - 1until P_k \square P_a a\delta(q,a) \leftarrow k8
     return \delta
```
- Time Complexity: $O(m^3|\Sigma|)$.
- **•** This Complexity can be reduced to $O(m|\Sigma|)$. How?

String-Matching Automata (Correctness)

Lemma (Suffix-function inequality)

For any string x and character a, we have $\sigma(xa) \leq \sigma(x) + 1$.

Proof.

Let $r = \sigma(xa)$ and follow the figure...

String-Matching Automata (Correctness)

Lemma (Suffix-function recursion)

For any string x and character a, if $q = \sigma(x)$, then $\sigma(xa) = \sigma(P_a a)$.

Proof.

Let $r = \sigma(xa)$ and follow the figure...

String-Matching Automata (Correctness)

Theorem

If φ is the final-state function of a string-matching automaton for a given pattern P and $T[1 \cdots n]$ is an input text for the automaton, then $\varphi(T_i) = \sigma(T_i)$ for $i = 0, 1, \cdots, n$.

Proof.

The proof is by induction on *i*. For $i = 0$, the theorem is trivially true, since $T_0 = \epsilon$. Thus, $\varphi(T_0) = 0 = \sigma(T_0)$. Now, we assume that $\varphi(T_i) = \sigma(T_i)$ and prove that $\varphi(T_{i+1}) = \sigma(T_{i+1})$. Let q denotes $\varphi(T_i)$, and let a denotes $T[i + 1]$. Then:

 $\varphi(T_{i+1}) = \varphi(T_i a)$ (by the definitions of T_{i+1} and a) $= \delta(\varphi(T_i), a)$ (by the definition of φ) $= \delta(q, a)$ (by the definition of q) $= \sigma(P_q a)$ (by the definition of δ) $= \sigma(T_i a)$ (by previous lemmas and induction) $= \sigma(T_{i+1})$ (by the definition of T_{i+1}).

The Knuth-Morris-Pratt (KMP) algorithm

- This algorithm avoids the computation of the costly transition function δ .
- Instead, it uses an auxiliary function $\pi[1 \cdots m]$ (called Prefix Function), precomputed from the pattern in time $\Theta(m)$.
- For any state $q = 0, 1, \dots, m$ and any character $a \in \Sigma$, the value $\pi[q]$ contains the information that is independent of a and is needed to compute $\delta(q, a)$.
- The prefix function π for a pattern encapsulates knowledge about how the pattern matches against shifts of itself.
- **•** The array π has only m entries, whereas δ has $m \times |\Sigma|$ entries.
- Its matching time would be $\Theta(n)$.

KMP Algorithm: Motivation

 (c)

KMP Algorithm: Motivation

General Question

Given that pattern characters $P[1 \cdots q]$ match text characters $T[s + 1 \cdots s + q]$, what is the least shift $s' > s$ such that

$$
P[1\cdots k] = T[s'+1\cdots s'+k],
$$

where $s' + k = s + q$?

- Such a shift s' is the first shift greater than s that is not necessarily invalid due to our knowledge of $T[s + 1 \cdots s + q]$.
- In the best case, we have that $s' = s + q$, and shifts $s + 1$, $s + 2$, \cdots , $s + q - 1$ are all immediately ruled out.
- In any case, at the new shift s' we don't need to compare the first k characters of P with the corresponding characters of T , since we are guaranteed that they match.

KMP Algorithm: prefix function

- The necessary information can be precomputed by comparing the pattern against itself.
- Since $\mathcal{T}[s'+1 \cdots s'+k]$ is part of the known portion of the text, it is a suffix of the string P_a .
- Equation $P[1\cdots k] = \mathcal{T}[s'+1\cdots s'+k]$ can therefore be interpreted as asking for the largest $k < q$ such that $P_k \supset P_q$.
- Then, $s' = s + (q k)$ is the next potentially valid shift.

Formal definition of prefix function

Given a pattern $P[1 \cdots m]$, the prefix function for the pattern P is the function $\pi : \{1, 2, \dots, m\} \mapsto \{0, 1, \dots, m-1\}$ such that

$$
\pi[q] = \max\{k \mid k < q \text{ and } P_k \sqsupset P_q\}.
$$

One again: $\pi[q]$ is the length of the longest prefix of P that is a suffix of P_a .

KMP Algorithm: prefix function

 (a)

KMP Algorithm: Matcher

```
KMP-MATCHER(T, P)1 n \leftarrow length[T]2 m \leftarrow length[P]3 \pi \leftarrow COMPUTE-PREFIX-FUNCTION(P)
    q \leftarrow 0\triangleright Number of characters matched.
 \overline{4}5
     for i \leftarrow 1 to n
                                                      \triangleright Scan the text from left to right.
            do while q > 0 and P[q + 1] \neq T[i]6
 \overline{7}\mathbf{d}\mathbf{o} \mathbf{a} \leftarrow \pi[\mathbf{a}]\triangleright Next character does not match.
 8
                if P[q + 1] = T[i]9
                   then q \leftarrow q + 1\triangleright Next character matches.
10
                if q = m\triangleright Is all of P matched?
                   then print "Pattern occurs with shift" i - m11
12
                         q \leftarrow \pi[q]\triangleright Look for the next match.
```
• Time Complexity: $\Theta(n)$ (Amortized analysis?)

KMP Algorithm: Computing Prefix Function

COMPUTE-PREFIX-FUNCTION (P)

1 $m \leftarrow length[P]$ 2 $\pi[1] \leftarrow 0$ $3 k \leftarrow 0$ 4 for $q \leftarrow 2$ to m 5 **do while** $k > 0$ and $P[k+1] \neq P[q]$ 6 $\mathbf{d}\mathbf{o} k \leftarrow \pi[k]$ $\begin{array}{c} 7 \\ 8 \end{array}$ if $P[k+1] = P[q]$ then $k \leftarrow k + 1$ 9 $\pi[q] \leftarrow k$ 10 return π

• Time Complexity: $\Theta(m)$ (Amortized analysis?)

Exercises

- 1. Show how to extend the Rabin-Karp method to handle the problem of looking for a given $m \times m$ pattern in an $n \times n$ array of characters. (The pattern may be shifted vertically and horizontally, but it may not be rotated)
- 2. Draw a state-transition diagram for a string-matching automaton for the pattern ababbabababababbabb over the alphabet $\{a, b\}$.
- 3. Given two patterns P and P' , describe how to construct a finite automaton that determines all occurrences of either pattern. Try to minimize the number of states in your automaton.
- 4. Compute the prefix function π for the pattern ababbabbabbabbabbabb when the alphabet is $\Sigma = \{a, b\}.$
- 5. Give a linear-time algorithm to determine if a text T is a cyclic rotation of another string T' . For example, arc and car are cyclic rotations of each other.
- 6. Give an efficient algorithm for computing the transition function δ for the string-matching automaton corresponding to a given pattern P. Your algorithm should run in time $O(m|\Sigma|)$. (Hint: Prove that $\delta(q, a) = \delta(\pi[q], a)$ if $q = m$ or $P[q + 1] \neq a.$

End.