
Input Size and Time Complexity
�Time complexity of algorithms:

� Polynomial time (efficient) vs. Exponential time (inefficient)

3

f(n) n = 10 30 50

n 0.00001 sec 0.00003 sec 0.00005 sec

n5 0.1 sec 24.3 sec 5.2 mins

2n 0.001 sec 17.9 mins 35.7 yrs

Intractability
�Dictionary Definition of intractable: “difficult to treat

or work.”
�Computer Science: problem is intractable if a

computer has difficulty solving it

7

Tractable
�A problem is tractable if there exists a polynomial-

bound algorithm that solves it.
�Worst-case growth rate can be bounded by a

polynomial
�Function of its input size
�P(n) = annk + . . . + a1n + a0 where k is a constant
�P(n) is θ(nk)
�nlgn not a polynomial
�nlgn < n2 bound by a polynomial

8

Three General Categories of
Problems

1. Problems for which polynomial-time algorithms
have been found

2. Problems that have been proven to be
intractable

3. Problems that have not been proven to be
intractable, but for which polynomial-time
algorithms have never been found

10

Polynomial-time Algorithms
�Θ(nlgn) for sorting
�Θ(lgn) for searching
�Θ(n3) for chained-matrix multiplication

11

Not proven to be intractable no
existing polynomial time algorithm
�Traveling salesperson
�0-1 Knapsack
�Graph coloring
�Sum of subsets

13

Define
�Decision problems
�The class P
�Nondeterministic algorithms
�The class NP
�Polynomial transformations
�The class of NP-Complete

14

Decision problem
�Problem where the output is a simple “yes” or “no”
�Theory of NP-completeness is developed by

restricting problems to decision problems
�Optimization problems can be transformed into

decision problems
�Optimization problems are at least as hard as the

associated decision problem
� If polynomial-time algorithm for the optimization

problem is found, we would have a polynomial-
time algorithm for the corresponding decision
problem

15

Decision Problems
�Traveling Salesperson
�For a given positive number d, is there a tour

having length <= d?
�0-1 Knapsack
�For a given profit P, is it possible to load the

knapsack such that total weight <= W?

16

Class P
�The set of all decision problems that can be solved

by polynomial-time algorithms
�Decision versions of searching, shortest path,

spanning tree, etc. belong to P
�Do problems such as traveling salesperson and 0-

1 Knapsack (no polynomial-time algorithm has
been found), etc., belong to P?
�No one knows
�To know a decision problem is not in P, it must

be proven it is not possible to develop a
polynomial-time algorithm to solve it

18

Nondeterministic Algorithms –
consist of 2 phases
1. Nondeterministic phase – Guessing Phase:

given an instance of a problem, a solution is
guessed (represented by some string s); We call
it nondeterminisitic because unique step-by-step
instructions are not specified

2. Deterministic phase – Verification Phase

19

Polynomial-time Nondeterministic
Algorithm (NDA)

�A nondeterministic algorithm whose verification
stage is a polynomial-time algorithm

22

Class NP
�The set of all decision problems that can be solved

by polynomial-time nondeterministic algorithms
�Nondeterministic polynomial
�For a problem to be in NP, there must be an

algorithm that does the verification in polynomial
time

�Traveling salesperson decision problem belongs to
NP
�Show a guess, s, length polynomial bounded
�Yes answer verified in a polynomial number of

steps

23

Figure 9.3
32

Polynomial-time Reducibility
�Want to solve decision problem A
�Have an algorithm to solve decision problem B
�Can write an algorithm that creates instance y
of problem B from every instance x of problem
A such that:
�Algorithm for B answers yes for y if the
answer to problem A is yes for x

34

Polynomial-time Reducibility
�Transformation algorithm
�Function that maps every instance of
problem A to an instance of problem B

�y = trans(x)
�Transformation algorithm + algorithm for
problem B yields an algorithm for problem A

35

Figure 9.4
36

Polynomial-time many-one
reducible
� If there exists a polynomial-time transformation

algorithm from decision problem A to decision
problem B, problem A is polynomial-time many-one
reducible to problem B

�A v B
�Many-one: transformation algorithm is a function

that may map many instances of problem A to one
instance of problem B

� If the transformation algorithm is polynomial-time
and the algorithm for problem B is polynomial, The
algorithm for A must be polynomial

37

Theorem 9.1
� If decision problem B is in P and A v B, then

decision problem A is in P

38

NP-Complete
�A problem B is called NP-complete if both the

following are true:
1. B is in NP
2. For every other problem A in NP, A v B

40

Figure 9.7
43

