
Input Size and Time Complexity
�Time complexity of algorithms:

� Polynomial time (efficient) vs. Exponential time (inefficient)
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f(n) n = 10 30 50

n 0.00001 sec 0.00003 sec 0.00005 sec

n5 0.1 sec 24.3 sec 5.2 mins

2n 0.001 sec 17.9 mins 35.7 yrs



Intractability
�Dictionary Definition of intractable: “difficult to treat 

or work.”
�Computer Science: problem is intractable if a 

computer has difficulty solving it
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Tractable
�A problem is tractable if there exists a polynomial-

bound algorithm that solves it.
�Worst-case growth rate can be bounded by a 

polynomial 
�Function of its input size
�P(n) = annk + . . . + a1n + a0 where k is a constant
�P(n) is θ(nk)
�nlgn not a polynomial
�nlgn < n2 bound by a polynomial
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Three General Categories of 
Problems

1. Problems for which polynomial-time algorithms 
have been found

2. Problems that have been proven to be 
intractable 

3. Problems that have not been proven to be 
intractable, but for which polynomial-time 
algorithms have never been found
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Polynomial-time Algorithms
�Θ(nlgn) for sorting
�Θ(lgn) for searching
�Θ(n3) for chained-matrix multiplication
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Not proven to be intractable no 
existing polynomial time algorithm
�Traveling salesperson
�0-1 Knapsack
�Graph coloring
�Sum of subsets
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Define
�Decision problems
�The class P
�Nondeterministic algorithms
�The class NP
�Polynomial transformations
�The class of NP-Complete
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Decision problem
�Problem where the output is a simple “yes” or “no”
�Theory of NP-completeness is developed by 

restricting problems to decision problems
�Optimization problems can be transformed into 

decision problems
�Optimization problems are at least as hard as the 

associated decision problem
� If polynomial-time algorithm for the optimization 

problem is found, we would have a polynomial-
time algorithm for the corresponding decision 
problem
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Decision Problems
�Traveling Salesperson
�For a given positive number d, is there a tour 

having length <= d?
�0-1 Knapsack 
�For a given profit P, is it possible to load the 

knapsack such that total weight <= W?
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Class P
�The set of all decision problems that can be solved 

by polynomial-time algorithms
�Decision versions of searching, shortest path, 

spanning tree, etc. belong to P
�Do problems such as traveling salesperson and 0-

1 Knapsack (no polynomial-time algorithm has 
been found), etc., belong to P?
�No one knows
�To know a decision problem is not in P, it must 

be proven it is not possible to develop a 
polynomial-time algorithm to solve it
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Nondeterministic Algorithms –
consist of 2 phases
1. Nondeterministic phase – Guessing Phase: 

given an instance of a problem, a solution is 
guessed (represented by some string s); We call 
it nondeterminisitic because unique step-by-step 
instructions are not specified

2. Deterministic  phase – Verification Phase
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Polynomial-time Nondeterministic 
Algorithm (NDA)

�A nondeterministic algorithm whose verification 
stage is a polynomial-time algorithm
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Class NP
�The set of all decision problems that can be solved 

by polynomial-time nondeterministic algorithms
�Nondeterministic polynomial
�For a problem to be in NP, there must be an 

algorithm that does the verification in polynomial 
time

�Traveling salesperson decision problem belongs to 
NP
�Show a guess, s, length polynomial bounded
�Yes answer verified in a polynomial number of 

steps
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Figure  9.3
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Polynomial-time Reducibility
�Want to solve decision problem A
�Have an algorithm to solve decision problem B
�Can write an algorithm that creates instance y 
of problem B from every instance x of problem 
A such that:
�Algorithm for B answers yes for y if the 
answer to problem A is yes for x
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Polynomial-time Reducibility
�Transformation algorithm
�Function that maps every instance of 
problem A to an instance of problem B

�y = trans(x)
�Transformation algorithm + algorithm for 
problem B yields an algorithm for problem A
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Figure 9.4
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Polynomial-time many-one 
reducible
� If there exists a polynomial-time transformation 

algorithm from decision problem A to decision 
problem B, problem A is polynomial-time many-one 
reducible to problem B

�A v B
�Many-one: transformation algorithm is a function 

that may map many instances of problem A to one 
instance of problem B

� If the transformation algorithm is polynomial-time 
and the algorithm for problem B is polynomial, The 
algorithm for A must be polynomial
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Theorem 9.1
� If decision problem B is in P and A v B, then 

decision problem A is in P
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NP-Complete
�A problem B is called NP-complete if both the 

following are true:
1. B is in NP
2. For every other problem A in NP, A v B
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Figure 9.7
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