
Information Retrieval

Information Retrieval
Boolean information retrieval and document preprocessing

Hamid Beigy

Sharif university of technology

September 30, 2019

Hamid Beigy | Sharif university of technology | September 30, 2019 1 / 1

Information Retrieval

Table of contents

Hamid Beigy | Sharif university of technology | September 30, 2019 2 / 1

Information Retrieval | Introduction

Table of contents

Hamid Beigy | Sharif university of technology | September 30, 2019 3 / 1

Information Retrieval | Introduction

Boolean Retrieval Model
IR Basics

IR SystemQuery

Document
Collection

Set of relevant
documents

14

Document Collection: units we have
built an IR system over.

An information need is the topic about
which the user desires to know more
about.

A query is what the user conveys to the
computer in an attempt to
communicate the information need.

Hamid Beigy | Sharif university of technology | September 30, 2019 3 / 1

Information Retrieval | Boolean Retrieval Model

Table of contents

Hamid Beigy | Sharif university of technology | September 30, 2019 4 / 1

Information Retrieval | Boolean Retrieval Model

Boolean Retrieval Model

The Boolean model is arguably the simplest model to base an
information retrieval system on.

Queries are Boolean expressions, e.g., Caesar and Brutus

The search engine returns all documents that satisfy the Boolean
expression.

Hamid Beigy | Sharif university of technology | September 30, 2019 4 / 1

Information Retrieval | Boolean Retrieval Model

Unstructured data in 1650

Which plays of Shakespeare contain the words Brutus and
Caesar, but not Calpurnia?

One could grep all of Shakespeare’s plays for Brutus and Caesar,
then strip out lines containing Calpurnia.

Why is grep not the solution?

Slow (for large collections)
grep is line-oriented, IR is document-oriented
“not Calpurnia” is non-trivial
Other operations (e.g., find the word Romans near countryman)
not feasible

Hamid Beigy | Sharif university of technology | September 30, 2019 5 / 1

Information Retrieval | Boolean Retrieval Model

Term-document incidence matrix

Example

Anthony and Julius The Hamlet Othello Macbeth . . .
Cleopatra Caesar Tempest

Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

Entry is 1 if term occurs. Example: Calpurnia occurs in Julius Caesar.
Entry is 0 if term doesn’t occur. Example: Calpurnia doesn’t occur in the tempest.

Hamid Beigy | Sharif university of technology | September 30, 2019 6 / 1

Information Retrieval | Boolean Retrieval Model

Incidence vectors

So we have a 0/1 vector for each term.

To answer the query Brutus and Caesar and not Calpurnia:

Take the vectors for Brutus, Caesar, and Calpurnia
Complement the vector of Calpurnia
Do a (bitwise) and on the three vectors
110100 and 110111 and 101111 = 100100

Hamid Beigy | Sharif university of technology | September 30, 2019 7 / 1

Information Retrieval | Boolean Retrieval Model

0/1 vectors and result of bitwise operations

Example

Anthony and Julius The Hamlet Othello Macbeth . . .
Cleopatra Caesar Tempest

Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

result: 1 0 0 1 0 0

Hamid Beigy | Sharif university of technology | September 30, 2019 8 / 1

Information Retrieval | Boolean Retrieval Model

The results are two documents

Antony and Cleopatra, Act III, Scene ii

Agrippa [Aside to Dominitus Enobarbus]:
Why, Enobarbus, When Antony found Julius Caesar dead, He cried
almost to roaring, and he wept When at Philippi he found Brutus slain.

Hamlet, Act III, Scene ii

Lord Polonius:
I did enact Julius Caesar: I was killed i the Capitol; Brutus killed me.

Hamid Beigy | Sharif university of technology | September 30, 2019 9 / 1

Information Retrieval | Boolean Retrieval Model

Bigger collections

Consider N = 106 documents, each with about 1000 tokens

⇒ total of 109 tokens

On average 6 bytes per token, including spaces and punctuation ⇒
size of document collection is about 6 · 109 = 6 GB

Assume there are M = 500,000 distinct terms in the collection

M = 500,000× 106 = half a trillion 0s and 1s.

But the matrix has no more than one billion 1s.

Matrix is extremely sparse.

What is a better representations?

We only record the 1s.

Hamid Beigy | Sharif university of technology | September 30, 2019 10 / 1

Information Retrieval | Boolean Retrieval Model

Architecture of IR systems

Hamid Beigy | Sharif university of technology | September 30, 2019 11 / 1

Information Retrieval | Inverted index

Table of contents

Hamid Beigy | Sharif university of technology | September 30, 2019 12 / 1

Information Retrieval | Inverted index

Inverted Index

For each term t, we store a list of all documents that contain t.

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings

Hamid Beigy | Sharif university of technology | September 30, 2019 12 / 1

Information Retrieval | Inverted index

Inverted index construction

1 Collect the documents to be indexed:

Friends, Romans, countrymen. So let it be with Caesar . . .

2 Tokenize the text, turning each document into a list of tokens:

Friends Romans countrymen So . . .

3 Do linguistic preprocessing, producing a list of normalized tokens,

which are the indexing terms: friend roman countryman so . . .

4 Index the documents that each term occurs in by creating an inverted
index, consisting of a dictionary and postings.

Hamid Beigy | Sharif university of technology | September 30, 2019 13 / 1

Information Retrieval | Inverted index

Tokenization and preprocessing

Doc 1. I did enact Julius Caesar: I
was killed i’ the Capitol; Brutus killed
me.
Doc 2. So let it be with Caesar. The
noble Brutus hath told you Caesar
was ambitious:

=⇒
Doc 1. i did enact julius caesar i was
killed i’ the capitol brutus killed me
Doc 2. so let it be with caesar the
noble brutus hath told you caesar was
ambitious

Hamid Beigy | Sharif university of technology | September 30, 2019 14 / 1

Information Retrieval | Inverted index

Example: index creation by sorting
Example: index creation by sorting

Term docID Term (sorted) docID

I 1 ambitious 2

did 1 be 2

enact 1 brutus 1

julius 1 brutus 2

Doc 1: caesar 1 capitol 2

I did enact Julius I 1 caesar 1

Caesar: I was killed =) was 1 caesar 2

i’ the Capitol;Brutus Tokenisation killed 1 caesar 2

killed me. i’ 1 did 1

the 1 enact 1

capitol 1 hath 1

brutus 1 I 1

killed 1 I 1

me 1 i’ 1

so 2 =) it 2

let 2 Sorting julius 1

it 2 killed 1

Doc 2: be 2 killed 2

So let it be with with 2 let 2

Caesar. The noble caesar 2 me 1

Brutus hath told =) the 2 noble 2

you Caesar was Tokenisation noble 2 so 2

ambitious. brutus 2 the 1

hath 2 the 2

told 2 told 2

you 2 you 2

caesar 2 was 1

was 2 was 1

ambitious 2 with 2

7

Hamid Beigy | Sharif university of technology | September 30, 2019 15 / 1

Information Retrieval | Inverted index

Index creation (grouping step)
Index creation; grouping step (“uniq”)

Term & doc. freq. Postings list

ambitious 1 ! 2

be 1 ! 2

brutus 2 ! 1 ! 2

capitol 1 ! 1

caesar 2 ! 1 ! 2

did 1 ! 1

enact 1 ! 1

hath 1 ! 2

I 1 ! 1

i’ 1 ! 1

it 1 ! 2

julius 1 ! 1

killed 1 ! 1

let 1 ! 2

me 1 ! 1

noble 1 ! 2

so 1 ! 2

the 2 ! 1 ! 2

told 1 ! 2

you 1 ! 2

was 2 ! 1 ! 2

with 1 ! 2

Primary sort by term
(dictionary)

Secondary sort (within
postings list) by document
ID

Document frequency (=
length of postings list):

for more e�cient
Boolean searching
for term weighting
(lecture 4)

keep Dictionary in memory

Postings List (much larger)
traditionally on disk

8

1 Primary sort by term (dictionary)

2 Secondary sort (within postings list)
by document ID

3 Document frequency (= length of
postings list):

for more efficient Boolean
searching (we discuss later)
for term weighting (we discuss
later)

4 Keep Dictionary in memory

5 Postings List (much larger)
traditionally on disk

Hamid Beigy | Sharif university of technology | September 30, 2019 16 / 1

Information Retrieval | Inverted index

Split the result into dictionary and postings file

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings file

Hamid Beigy | Sharif university of technology | September 30, 2019 17 / 1

Information Retrieval | Processing Boolean queries

Table of contents

Hamid Beigy | Sharif university of technology | September 30, 2019 18 / 1

Information Retrieval | Processing Boolean queries

Simple conjunctive query (two terms)

Consider the query: Brutus AND Calpurnia

To find all matching documents using inverted index:

1 Locate Brutus in the dictionary
2 Retrieve its postings list from the postings file
3 Locate Calpurnia in the dictionary
4 Retrieve its postings list from the postings file
5 Intersect the two postings lists
6 Return intersection to user

Hamid Beigy | Sharif university of technology | September 30, 2019 18 / 1

Information Retrieval | Processing Boolean queries

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

Hamid Beigy | Sharif university of technology | September 30, 2019 19 / 1

Information Retrieval | Processing Boolean queries

Intersecting two postings listsAlgorithm for intersection of two postings

INTERSECT (p1, p2)

1 answer <>

2 while p1 6= NIL and p2 6= NIL

3 do if docID(p1) = docID(p2)

4 then ADD (answer, docID(p1))

5 p1 next(p1)

6 p2 next(p2)

7 if docID(p1) < docID(p2)

8 then p1 next(p1)

9 else p2 next(p2)

10 return answer

Brutus 1 2 4 45 31 11 174173

54 1012 31 Calpurnia

Intersection 2 31

32

Hamid Beigy | Sharif university of technology | September 30, 2019 20 / 1

Information Retrieval | Processing Boolean queries

Complexity of the Intersection Algorithm

Bounded by worst-case length of postings lists

Thus, formally, querying complexity is O(N), with N the number of
documents in the document collection

But in practice, much better than linear scanning, which is
asymptotically also O(N).

Hamid Beigy | Sharif university of technology | September 30, 2019 21 / 1

Information Retrieval | Processing Boolean queries

Query processing: Exercise

france −→ 1 → 2 → 3 → 4 → 5 → 7 → 8 → 9 → 11 → 12 → 13 → 14 → 15

paris −→ 2 → 6 → 10 → 12 → 14

lear −→ 12 → 15

Compute hit list for ((paris AND NOT france) OR lear)

Hamid Beigy | Sharif university of technology | September 30, 2019 22 / 1

Information Retrieval | Processing Boolean queries

Boolean retrieval model: Assessment

The Boolean retrieval model can answer any query that is a Boolean
expression.

Boolean queries are queries that use and, or and not to join query
terms.
Views each document as a set of terms.
Is precise: Document matches condition or not.

Primary commercial retrieval tool for 3 decades

Many professional searchers (e.g., lawyers) still like Boolean queries.

You know exactly what you are getting.

Many search systems you use are also Boolean: spotlight, email,
intranet etc.

Hamid Beigy | Sharif university of technology | September 30, 2019 23 / 1

Information Retrieval | Processing Boolean queries

Commercially successful Boolean retrieval: Westlaw

Largest commercial legal search service in terms of the number of
paying subscribers

Over half a million subscribers performing millions of searches a day
over tens of terabytes of text data

The service was started in 1975.

In 2005, Boolean search (called “Terms and Connectors” by Westlaw)
was still the default, and used by a large percentage of users . . .

. . . although ranked retrieval has been available since 1992.

Hamid Beigy | Sharif university of technology | September 30, 2019 24 / 1

Information Retrieval | Processing Boolean queries

Does Google use the Boolean model?

On Google, the default interpretation of a query [w1 w2 . . .wn] is w1

AND w2 AND . . .AND wn

Cases where you get hits that do not contain one of the wi :

anchor text
page contains variant of wi (morphology, spelling correction, synonym)
long queries (n large)
boolean expression generates very few hits

Simple Boolean vs. Ranking of result set

Simple Boolean retrieval returns matching documents in no particular
order.
Google (and most well designed Boolean engines) rank the result set –
they rank good hits (according to some estimator of relevance) higher
than bad hits.

Hamid Beigy | Sharif university of technology | September 30, 2019 25 / 1

Information Retrieval | Optimization

Table of contents

Hamid Beigy | Sharif university of technology | September 30, 2019 26 / 1

Information Retrieval | Optimization

Query optimization

Example query: Brutus AND Calpurnia AND Caesar

Simple and effective optimization: Process in order of increasing
frequency

Start with the shortest postings list, then keep cutting further

In this example, first Caesar, then Calpurnia, then Brutus

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Caesar −→ 5 → 31

Hamid Beigy | Sharif university of technology | September 30, 2019 26 / 1

Information Retrieval | Optimization

Optimized intersection algorithm for conjunctive queries
Optimized intersection algorithm for conjunctive queries

Intersect(⟨t1, . . . , tn⟩)
1 terms ← SortByIncreasingFrequency(⟨t1, . . . , tn⟩)
2 result ← postings(first(terms))
3 terms ← rest(terms)
4 while terms ̸= nil and result ̸= nil

5 do result ← Intersect(result, postings(first(terms)))
6 terms ← rest(terms)
7 return result

38 / 60

Hamid Beigy | Sharif university of technology | September 30, 2019 27 / 1

Information Retrieval | Optimization

Skip lists
Optimisation: Skip Lists

Recall basic algorithm

More e�cient way?

Yes (given that index doesn’t change too fast)

Augment postings lists with skip pointers (at indexing time)

If skip-list pointer present, skip multiple entries
E.g., after we match 8, 16 < 41: skip to item after skip pointer

Heuristic: for postings lists of length L, use
p
L evenly-spaced

skip pointers

10

1 Augment postings lists with skip pointers (at indexing time)

2 If skip-list pointer present, skip multiple entries
Example: after we match 8, 16 < 41, skip to item after skip pointer

3 How many skip-list pointers do we use?
Heuristic: for postings lists of length L, use

√
L evenly-spaced skip

pointers

Hamid Beigy | Sharif university of technology | September 30, 2019 28 / 1

Information Retrieval | Optimization

Intersection with skip pointers

Intersecting with skip pointers

IntersectWithSkips(p1, p2)
1 answer ← ⟨ ⟩
2 while p1 ̸= nil and p2 ̸= nil

3 do if docID(p1) = docID(p2)
4 then Add(answer , docID(p1))
5 p1 ← next(p1)
6 p2 ← next(p2)
7 else if docID(p1) < docID(p2)
8 then if hasSkip(p1) and (docID(skip(p1)) ≤ docID(p2))
9 then while hasSkip(p1) and (docID(skip(p1)) ≤ docID(p2))
10 do p1 ← skip(p1)
11 else p1 ← next(p1)
12 else if hasSkip(p2) and (docID(skip(p2)) ≤ docID(p1))
13 then while hasSkip(p2) and (docID(skip(p2)) ≤ docID(p1))
14 do p2 ← skip(p2)
15 else p2 ← next(p2)
16 return answer

46 / 62

Hamid Beigy | Sharif university of technology | September 30, 2019 29 / 1

Information Retrieval | Optimization

Where do we place skips?
Optimisation: Skip Lists

Recall basic algorithm

More e�cient way?

Yes (given that index doesn’t change too fast)

Augment postings lists with skip pointers (at indexing time)

If skip-list pointer present, skip multiple entries
E.g., after we match 8, 16 < 41: skip to item after skip pointer

Heuristic: for postings lists of length L, use
p
L evenly-spaced

skip pointers

10

1 Number of items skipped vs. frequency that skip can be taken
2 More skips: each pointer skips only a few items, but we can

frequently use it, but many comparisons.
3 Fewer skips: each skip pointer skips many items, but we can not use

it very often, but fewer comparisons.
4 This ignores the distribution of query terms.
5 Easy for static index; hard in dynamic environments due to updates.
6 How much do skip pointers help? They used to help a lot.
7 With today’s fast CPUs, they don’t help that much anymore.

Hamid Beigy | Sharif university of technology | September 30, 2019 30 / 1

Information Retrieval | Optimization

Phrase Queries

1 We want to answer a query such as stanford university as a
phrase.

2 The inventor Stanford Ovshinsky never went to
university should not be a match.

3 The concept of phrase query has proven easily understood by users.

4 About 10% of web queries are phrase queries (double-quotes syntax).

5 Consequence for inverted indexes: no longer sufficient to store docIDs
in postings lists.

6 Two ways of extending the inverted index:

biword index
positional index

Hamid Beigy | Sharif university of technology | September 30, 2019 31 / 1

Information Retrieval | Optimization

Biword index

1 Index every consecutive pair of terms in the text as a phrase

Example

For document: Friends, Romans, Countrymen
Generate two following biwords
friends romans and romans countrymen

2 Each of these biwords is now a dictionary term.

3 Two-word phrases can now easily be answered.

4 A long phrase like stanford university palo alto can be
broken into the Boolean query
stanford university AND university palo AND palo alto

5 False positives. we need to do post-filtering of hits to identify subset
that actually contains the 4-word phrase.

Hamid Beigy | Sharif university of technology | September 30, 2019 32 / 1

Information Retrieval | Optimization

Issues with biword index

1 Why is biword index rarely used?

2 False positives, as noted above

3 Index blowup due to very large dictionary / vocabulary

Searches for a single term?
Infeasible for more than bigrams

Hamid Beigy | Sharif university of technology | September 30, 2019 33 / 1

Information Retrieval | Optimization

Positional indexes

1 Positional indexes are a more efficient alternative to biword indexes.

2 Postings lists in a nonpositional index: each posting is just a docID

3 Postings lists in a positional index: each posting is a docID and a list
of positions (offsets).

Hamid Beigy | Sharif university of technology | September 30, 2019 34 / 1

Information Retrieval | Optimization

Positional indexes

1 Query: to be or not to be

Positional indexes: Example

Query: “to be or not to be”

to, 993427:

< 1: < 7, 18, 33, 72, 86, 231>;

2: <1, 17, 74, 222, 255>;

4: <8, 16, 190, 429, 433>;

5: <363, 367>;

7: <13, 23, 191>;

.>

be, 178239:

< 1: < 17, 25>;

4: < 17, 191, 291, 430, 434>;

5: <14, 19, 101>;

.>

Document 4 is a match – why?
(As always: term, doc freq, docid, o↵sets)

17

2 Document 4 matches. Why? (Always: term, doc freq, docid, offsets)
Hamid Beigy | Sharif university of technology | September 30, 2019 35 / 1

Information Retrieval | Optimization

Proximity search

1 We just saw how to use a positional index for phrase searches.

2 We can also use it for proximity search.

3 Example: employment /4 place

4 Find all documents that contain employment and place within 4
words of each other.
Employment agencies that place healthcare workers
are seeing growth is a hit.
Employment agencies that have learned to adapt now
place healthcare workers is not a hit.

5 Note that we want to return the actual matching positions, not just a
list of documents.

6 Use the positional index

Hamid Beigy | Sharif university of technology | September 30, 2019 36 / 1

Information Retrieval | Optimization

Proximity intersection
“Proximity” intersection

PositionalIntersect(p1, p2, k)
1 answer ← ⟨ ⟩
2 while p1 ̸= nil and p2 ̸= nil

3 do if docID(p1) = docID(p2)
4 then l ← ⟨ ⟩
5 pp1 ← positions(p1)
6 pp2 ← positions(p2)
7 while pp1 ̸= nil

8 do while pp2 ̸= nil

9 do if |pos(pp1)− pos(pp2)| ≤ k

10 then Add(l , pos(pp2))
11 else if pos(pp2) > pos(pp1)
12 then break

13 pp2 ← next(pp2)
14 while l ̸= ⟨ ⟩ and |l [0]− pos(pp1)| > k

15 do Delete(l [0])
16 for each ps ∈ l

17 do Add(answer , ⟨docID(p1), pos(pp1), ps⟩)
18 pp1 ← next(pp1)
19 p1 ← next(p1)
20 p2 ← next(p2)
21 else if docID(p1) < docID(p2)
22 then p1 ← next(p1)
23 else p2 ← next(p2)
24 return answer

58 / 62
Hamid Beigy | Sharif university of technology | September 30, 2019 37 / 1

Information Retrieval | Optimization

Combination scheme

1 Biword indexes and positional indexes can be profitably combined.

2 Many biwords are extremely frequent.

3 For frequent biwords, increased speed compared to positional postings
intersection is substantial.

4 Combination scheme: Include frequent biwords as vocabulary terms in
the index. Do all other phrases by positional intersection.

Hamid Beigy | Sharif university of technology | September 30, 2019 38 / 1

Information Retrieval | Optimization

More general optimization

Example query: (madding or crowd) and (ignoble or strife)

Get frequencies for all terms

Estimate the size of each or by the sum of its frequencies
(conservative)

Process in increasing order of or sizes

Hamid Beigy | Sharif university of technology | September 30, 2019 39 / 1

Information Retrieval | Document preprocessing

Table of contents

Hamid Beigy | Sharif university of technology | September 30, 2019 40 / 1

Information Retrieval | Document preprocessing

Documents

1 Up to now, to build an inverted index, we assumed that

We know what a document is.
We can machine-read each document
Each token is a candidate for a postings entry.

2 There is more complexity in reality

Hamid Beigy | Sharif university of technology | September 30, 2019 40 / 1

Information Retrieval | Document preprocessing

What is document?

1 What is the document unit for indexing?

a file in a folder?
a file containing an email thread?
an email?
an email with 5 attachments?
individual sentences?

2 Answering the question ”What is a document?” is not trivial

3 Precision/recall trade-off: smaller units raise precision, drop recall

Hamid Beigy | Sharif university of technology | September 30, 2019 41 / 1

Information Retrieval | Document preprocessing

Parsing a document

1 Convert byte sequence into a linear sequence of characters, but

We need to deal with format and language of each document.
We need to determine the correct character encoding
We need to determine format to decode the byte sequence into a
character sequence
MS word, zip, pdf, latex, xml (e.g., &). . .
Each of these is a statistical classification problem
Alternatively we can use heuristics
Text is not just a linear sequence of characters (e.g., diacritics above
and below letters in Arabic)

2 Some of these are a classification problem (we will study later).

Hamid Beigy | Sharif university of technology | September 30, 2019 42 / 1

Information Retrieval | Document preprocessing

Some definitions

1 Type: We call any unique word a type (the is a word type)

2 Token: An instance of a type occurring in a document (e.g., 13721
the tokens in Moby Dick).

3 Word: A delimited string of characters as it appears in the text.

4 Term : A normalized word (case, morphology, spelling etc); an
equivalence class of words.

Hamid Beigy | Sharif university of technology | September 30, 2019 43 / 1

Information Retrieval | Document preprocessing

Tokenization

1 Text is not just a linear sequence of characters (e.g., diacritics above
and below letters in Arabic)

2 What language is it in?

3 Writing system conventions?

4 Documents or their components can contain multiple
languages/format; for instance a French email with a Spanish pdf
attachment

5 A single index usually contains terms of several languages

Hamid Beigy | Sharif university of technology | September 30, 2019 44 / 1

Information Retrieval | Document preprocessing

Tokenization

1 Given a character sequence (and a defined document unit), we now
need to determine our tokens, but, what are the correct tokens to use?

Example

Mr. O’Neill thinks that the boys’ stories about Chile’s capital aren’t
amusing.

Tokenisation

Given a character sequence (and a defined document unit), we now
need to determine our tokens. . .
. . . but, what are the correct tokens to use?

Mr. O’Neill thinks that the boys’ stories about Chile’s capital
aren’t amusing.

neill aren’t

oneill arent

o’neill are n’t

o’ neill aren t

o neill
?

?

The choices determine which queries will match.

26

2 The choices determine which queries will match.

Hamid Beigy | Sharif university of technology | September 30, 2019 45 / 1

Information Retrieval | Document preprocessing

Tokenization problems: One word or two? (or several)

1 Hewlett-Packard

2 State-of-the-art

3 co-education

4 the hold-him-back-and-drag-him-away maneuver data base

5 San Francisco

6 Los Angeles-based company

7 cheap San Francisco-Los Angeles fares York University vs. New York
University

Hamid Beigy | Sharif university of technology | September 30, 2019 46 / 1

Information Retrieval | Document preprocessing

Tokenization problems: Numbers

1 3/20/91

2 20/3/91

3 Mar 20, 1991

4 B-52

5 100.2.86.144

6 (800) 234-2333

7 800.234.2333

8 Older IR systems may not index numbers but generally its a
useful feature.

Hamid Beigy | Sharif university of technology | September 30, 2019 47 / 1

Information Retrieval | Document preprocessing

Tokenization problems: whitespace

1 No whitespace in Chinese language

Chinese: No whitespace

莎拉波娃!在居住在美国"南部的佛#里$。今年４月

９日，莎拉波娃在美国第一大城市%&度'了１８(生

日。生日派)上，莎拉波娃露出了甜美的微笑。

23 / 62

2 Ambiguous segmentation in ChineseAmbiguous segmentation in Chinese

和尚
The two

characters can be treated as one word meaning ‘monk’ or as a
sequence of two words meaning ‘and’ and ‘still’.

24 / 62The two characters can be treated as one word meaning monk or as a
sequence of two words meaning and and still.

3 Compounds in Dutch, German, Swedish
Computerlinguistik ⇒ Computer + Linguistik
Lebensversicherungsgesellschaftsangestellter ⇒ leben + versicherung +
gesellschaft + angestellter

4 Many other languages with segmentation difficulties: Finnish, Urdu,
Persian, Arabic

Hamid Beigy | Sharif university of technology | September 30, 2019 48 / 1

Information Retrieval | Document preprocessing

Normalization

1 Need to normalize words in indexed text as well as query terms into
the same form.
Example: We want to match U.S.A. and USA

2 We most commonly implicitly define equivalence classes of terms.

3 Alternatively: do asymmetric expansion

Windows ⇒ Windows,
windows ⇒ Windows, windows, window
window ⇒ window, windows

4 Why dont you want to put window, Window, windows, and Windows
in the same equivalence class?

5 Normalization and language detection interact.

In PETER WILL NICHT MIT, MIT = mit.
In He got his PhD from MIT, MIT ̸= mit.

Hamid Beigy | Sharif university of technology | September 30, 2019 49 / 1

Information Retrieval | Document preprocessing

Accents and diacritics

1 Accents: r ésumé vs. resume (simple omission of accent)

2 Umlauts: Universität vs. Universitaet (substitution with special letter
sequence ae)

3 Most important criterion: How are users likely to write their queries
for these words?

4 Even in languages that standardly have accents, users often do not
type them. (Polish?)

Hamid Beigy | Sharif university of technology | September 30, 2019 50 / 1

Information Retrieval | Document preprocessing

Case folding

1 Reduce all letters to lower case

2 Even though case can be semantically meaningful

capitalized words in mid-sentence MIT vs. mit
Fed vs. fed

3 Its often best to lowercase everything since users will use lowercase
regardless of correct capitalization

Hamid Beigy | Sharif university of technology | September 30, 2019 51 / 1

Information Retrieval | Document preprocessing

Stop words

1 Stop words are extremely common words which would appear to be of
little value in helping select documents matching a user need
Examples: a, an, and, are, as, at, be, by, for, from, has, he, in, is, it,
its, of, on, that, the, to, was, were, will, with

2 Stop word elimination used to be standard in older IR systems.

3 But you need stop words for phrase queries, e.g. King of Denmark

4 Most web search engines index stop words

Hamid Beigy | Sharif university of technology | September 30, 2019 52 / 1

Information Retrieval | Document preprocessing

Lemmatization

1 Reduce inflectional/variant forms to base form

2 For example

Example: am, are, is ⇒ be
car, cars, car’s, cars’ ⇒ car
the boy’s cars are different colors ⇒ the boy car be different color

3 Lemmatization implies doing proper reduction to dictionary headword
form (the lemma).

4 Inflectional morphology (cutting ⇒ cut) vs. derivational morphology
(destruction ⇒ destroy)

Hamid Beigy | Sharif university of technology | September 30, 2019 53 / 1

Information Retrieval | Document preprocessing

Stemming

1 Definition of stemming: Crude heuristic process that chops off the
ends of words in the hope of achieving what principled

2 Lemmatization attempts to do with a lot of linguistic knowledge.

3 Language dependent

4 Often inflectional and derivational
Example for derivational: automate, automatic, automation all reduce
to automat

5 Most common algorithm for stemming English is Porter algorithm.

6 In general, stemming increases effectiveness for some queries, and
decreases effectiveness for others.

Hamid Beigy | Sharif university of technology | September 30, 2019 54 / 1

Information Retrieval | Document preprocessing

Exercise: What does Google do?

1 Stop words

2 Normalization

3 Tokenization

4 Lowercasing

5 Stemming

6 Non-latin alphabets

7 Umlauts

8 Compounds

9 Numbers

Hamid Beigy | Sharif university of technology | September 30, 2019 55 / 1

Information Retrieval | Document preprocessing

Exercise: Write examples for Persian language

1 Stop words

2 Normalization

3 Tokenization

4 Lowercasing

5 Stemming

6 Non-latin alphabets

7 Umlauts

8 Compounds

9 Numbers

Hamid Beigy | Sharif university of technology | September 30, 2019 56 / 1

Information Retrieval | Document preprocessing

Reuters RCV1 collection

1 Reuters RCV1 collectionis English newswire articles published in a
12-month period (1995/6)

2 It contains 800,000 documents, 400,000 terms, and 100,000,000
tokens.

3 Please see this dataset.

Hamid Beigy | Sharif university of technology | September 30, 2019 57 / 1

Information Retrieval | Document preprocessing

Reading

Please read chapter 2 of Information Retrieval Book.

Hamid Beigy | Sharif university of technology | September 30, 2019 58 / 1

