
Scoring (Vector Space Model)
CE-324: Modern Information Retrieval
Sharif University of Technology

M. Soleymani

Fall 2015

Most slides have been adapted from: Profs. Manning, Nayak &
Raghavan (CS-276, Stanford)

Outline

 Ranked retrieval

 Scoring documents

 Term frequency

 Collection statistics

 Term weighting

 Weighting schemes

 Vector space scoring

2

Ranked retrieval

 Boolean models:

 Queries have all been Boolean.

 Documents either match or don’t.

 Boolean models are not good for the majority of users.

 Most users incapable of writing Boolean queries.

 a query language of operators and expressions

 Most users don’t want to wade through 1000s of results.

 This is particularly true of web search.

Ch. 6

3

 Too few (=0) or too many unranked results.

 It takes a lot of skill to come up with a query that

produces a manageable number of hits.

 AND gives too few; OR gives too many

Ch. 6

Problem with Boolean search: feast or famine

4

Ranked retrieval models

 Return an ordering over the (top) documents in the

collection for a query

 Ranking rather than a set of documents

 Free text queries: query is just one or more words in a

human language

 In practice, ranked retrieval has normally been associated

with free text queries and vice versa

5

Feast or famine: not a problem in ranked

retrieval

 When a system produces a ranked result set, large result

sets are not an issue

 We just show the top k (≈ 10) results

 We don’t overwhelm the user

 Premise: the ranking algorithm works

Ch. 6

6

Scoring as the basis of ranked retrieval

 Return in order the docs most likely to be useful to the

searcher

 How can we rank-order docs in the collection with

respect to a query?

 Assign a score (e.g. in [0, 1]) to each document

 measures how well doc and query “match”

Ch. 6

7

Query-document matching scores

 Assigning a score to a query/document pair

 Start with a one-term query

 Score 0 when query term does not occur in doc

 More frequent query term in doc gets higher score

 We will look at a number of alternatives for this.

Ch. 6

8

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Each doc is represented by a binary vector ∈ {0,1}
|V|

Sec. 6.2

Binary term-document incidence matrix

9

Term-document count matrices

 Number of occurrences of a term in a document:

 Each doc is a count vector ∈ ℕ|𝑉| (a column below)

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0

Brutus 4 157 0 1 0 0

Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0

Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

Sec. 6.2

10

Bag of words model

 Vector representation doesn’t consider the ordering of

words in a doc

 John is quicker than Mary and Mary is quicker than John

have the same vectors

 This is called the bag of words model.

 “recovering” positional information later in this course.

 For now: bag of words model

11

Term frequency tf

 Term frequency tf𝑡,𝑑: the number of times that term t

occurs in doc d.

 How to compute query-doc match scores using tf𝑡,𝑑?

 Raw term frequency is not what we want:

 A doc with tf=10 occurrence of a term is more relevant than a doc

with tf=1.

 But not 10 times more relevant.

 Relevance does not increase proportionally with tf𝑡,𝑑.

frequency = count in IR

12

Log-frequency weighting

 The log frequency weight of term 𝑡 in 𝑑 is

 Example:

 0 → 0

 1 → 1

 2 → 1.3

 10 → 2

 1000 → 4

Sec. 6.2

13

𝑤𝑡,𝑑 =
1 + log10 𝑡𝑓𝑡,𝑑 , 𝑡𝑓𝑡,𝑑 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

First idea

 Score for a doc-query pair (𝑞, 𝑑𝑖):

𝑠𝑐𝑜𝑟𝑒 𝑞, 𝑑𝑖 =

𝑡∈𝑞

𝑤𝑡,𝑖 =

𝑡∈𝑞∩𝑑𝑖

1 + log10 𝑡𝑓𝑡,𝑖

 It is 0 if none of the query terms is present in doc.

14

Term specificity

 Weighting the terms differently according to their

specificity:

 Term specificity is based on the accuracy of the term as a

descriptor of a doc topic

 It can be quantified as an inverse function of the number of

docs in which occur (inverse doc frequency)

Sec. 6.2.1

15

Document frequency

16

 Rare terms can be more informative than frequent terms

 Stop words are not informative

 frequent terms in the collection (e.g., high, increase, line)

 A doc containing them is more likely to be relevant than a doc that

doesn’t

 But it’s not a sure indicator of relevance

 High positive weights for such words

 But lower weights than for rare terms

 a query term that is rare in the collection (e.g., arachnocentric)

 A doc containing it is very likely to be relevant to the query

 The most informative terms are nouns or noun groups

Document frequency (cont’d)

 Frequent terms are less informative than rare terms

 We want a high weight for rare terms

 We will use doc frequency (df) to capture this.

Sec. 6.2.1

17

Collection frequency vs. Doc frequency

 Collection frequency of t: number of occurrences of t

in the collection, counting multiple occurrences.

 Example:

 Which word is a better search term (and should get a

higher weight)?

Word Collection frequency Document frequency

insurance 10440 3997

try 10422 8760

Sec. 6.2.1

18

idf weight

 dft (document frequency of t): the number of docs that

contain t

 dft is an inverse measure of informativeness of t

 dft N

 idf (inverse document frequency of t)

 log (N/dft) instead of N/dft to “dampen” the effect of idf.

idf𝑡 = log10𝑁/df𝑡

Will turn out the base of the log is immaterial.

Sec. 6.2.1

19

idf example, suppose N = 1 million

term dft idft

calpurnia 1 6

animal 100 4

sunday 1,000 3

fly 10,000 2

under 100,000 1

the 1,000,000 0

There is one idf value for each term t in a collection.

Sec. 6.2.1

20

idf𝑡 = log10𝑁/df𝑡

idf example, suppose N = 1 million

term dft idft

calpurnia 1 6

animal 100 4

sunday 1,000 3

fly 10,000 2

under 100,000 1

the 1,000,000 0

There is one idf value for each term t in a collection.

Sec. 6.2.1

21

idf𝑡 = log10𝑁/df𝑡

Effect of idf on ranking

 Does idf have an effect on ranking for one-term queries

 idf has no effect on ranking one term queries

 affects for queries with at least two terms

 Example query: capricious person

 idf weighting makes occurrences of capricious count for much more

in final doc ranking than occurrences of person.

22

TF-IDF weighting

 The tf-idf weight of a term is the product of its tf weight

and its idf weight.

 Increases with number of occurrences within a doc

 Increases with the rarity of the term in the collection

tf. idf𝑡,𝑑 = tf𝑡,𝑑 × idf𝑡

 Best known weighting scheme in information retrieval

 Alternative names: tf.idf, tf x idf

Sec. 6.2.2

23

TF-IDF weighting

24

 A common tf-idf:

𝑤𝑡,𝑖 =
1 + log10 tf𝑡,𝑖 × log10𝑁/df𝑡 , 𝑡 ∈ 𝑑𝑖

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Score for a document given a query via tf-idf:

𝑠𝑐𝑜𝑟𝑒 𝑞, 𝑑𝑖 =

𝑡∈𝑞

𝑤𝑡,𝑖

=

𝑡∈𝑞∩𝑑𝑖

1 + log10 tf𝑡,𝑖 × log10𝑁/df𝑡

Document length normalization

25

 Doc sizes might vary widely

 Problem: Longer docs are more likely to be retrieved

 Solution: divide the rank of each doc by its length

 How to compute document lengths:

 Number of words

 Vector norms: 𝑑𝑗 = 𝑖=1
𝑚 𝑤𝑖,𝑗

2

Documents as vectors

 |𝑉|-dimensional vector space:

 Terms are axes of the space

 Docs are points or vectors in this space

 Very high-dimensional: tens of millions of dimensions for a

web search engine

 These are very sparse vectors (most entries are zero).

Sec. 6.3

26

Binary → count → weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35

Brutus 1.21 6.1 0 1 0 0

Caesar 8.59 2.54 0 1.51 0.25 0

Calpurnia 0 1.54 0 0 0 0

Cleopatra 2.85 0 0 0 0 0

mercy 1.51 0 1.9 0.12 5.25 0.88

worser 1.37 0 0.11 4.15 0.25 1.95

Each doc is now represented by a real-valued vector

(∈ R|V|
) of tf-idf weights

Sec. 6.3

27

Queries as vectors

 Key idea 1: Represent docs also as vectors

 Key idea 2: Rank docs according to their proximity to the

query in this space

 proximity = similarity of vectors

 proximity ≈ inverse of distance

 To get away from you’re-either-in-or-out Boolean model.

 Instead: rank more relevant docs higher than less relevant docs

Sec. 6.3

28

mojtaba
Highlight
query

mojtaba
Typewritten Text

mojtaba
Typewritten Text

mojtaba
Typewritten Text

Formalizing vector space proximity

 First cut: distance between two points

 distance between the end points of the two vectors

 Euclidean distance?

 Euclidean distance is not a good idea . . .

 It is large for vectors of different lengths.

Sec. 6.3

29

mojtaba
Highlight

Why distance is a bad idea

30

 Euclidean(q,d2) is

large

 While distribution

of terms in q and d2
are very similar.

Use angle instead of distance

 Experiment:

 Take 𝑑 and append it to itself. Call it 𝑑′.

 “Semantically” 𝑑 and 𝑑′ have the same content

 Euclidean distance between them can be quite large

 Angle between them is 0, corresponding to maximal similarity.

 Key idea: Rank docs according to angle with query.

Sec. 6.3

31

From angles to cosines

 The following two notions are equivalent.

 Rank docs in decreasing order of the 𝑎𝑛𝑔𝑙𝑒(𝑞, 𝑑)

 Rank docs in increasing order of 𝑐𝑜𝑠𝑖𝑛𝑒(𝑞, 𝑑)

 Cosine is a monotonically decreasing function for the

interval [0o, 180o]

 But how – and why – should we be computing cosines?

Sec. 6.3

32

Length normalization

 Length (L2 norm) of vectors:

 (length-) normalizedVector: Dividing a vector by its length

 Makes a unit (length) vector

 Vector on surface of unit hypersphere

 𝑥

 𝑥

i ixx 2

2

Sec. 6.3

33

Length normalization

 𝑑 and 𝑑′ (𝑑 appended to itself) have identical vectors

after length-normalization.

 Long and short docs now have comparable weights

34

Cosine similarity amongst 3 documents

35

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

wuthering 0 0 38

 How similar are these

novels?

 SaS: Sense and Sensibility

 PaP: Pride and Prejudice

 WH:Wuthering Heights

Term frequencies (counts)

Note: To simplify this example, we don’t do idf weighting.

3 documents example contd.

Log frequency weighting

term SaS PaP WH

affection 3.06 2.76 2.30

jealous 2.00 1.85 2.04

gossip 1.30 0 1.78

wuthering 0 0 2.58

After length normalization

term SaS PaP WH

affection 0.789 0.832 0.524

jealous 0.515 0.555 0.465

gossip 0.335 0 0.405

wuthering 0 0 0.588

cos(SaS,PaP) ≈ 0.94

cos(SaS,WH) ≈ 0.79

cos(PaP,WH) ≈ 0.69

Why do we have cos(SaS,PaP) > cos(SaS,WH)?

Sec. 6.3

36

Cosine (query,document)

Dot product Unit vectors

𝑞𝑡 : tf-idf weight of term 𝑡 in query

𝑑𝑡 : tf-idf weight of term 𝑡 in doc

cos(𝑞, 𝑑): cosine similarity of q and d

(cosine of the angle between q and d.)

Sec. 6.3

37

𝑐𝑜𝑠 𝑑, 𝑞 =
 𝑑. 𝑞

 𝑑 𝑞
=

 𝑑

 𝑑
.

 𝑞

 𝑞

Cosine (query,document)

cos(𝑞, 𝑑): cosine similarity of q and d

(cosine of the angle between q and d.)

Sec. 6.3

38

𝑐𝑜𝑠 𝑑, 𝑞 =
 𝑑. 𝑞

 𝑑 𝑞
=

 𝑑

 𝑑
.

 𝑞

 𝑞

𝑠𝑖𝑚 𝑑, 𝑞 =
 𝑑. 𝑞

 𝑑 𝑞
=

 𝑡=1
𝑚 𝑤𝑡,𝑑 × 𝑤𝑡,𝑞

 𝑡=1
𝑚 𝑤𝑡,𝑑

2 × 𝑡=1
𝑚 𝑤𝑡,𝑞

2

Cosine for length-normalized vectors

 For length-normalized vectors, cosine similarity is simply

the dot product (or scalar product):

𝑐𝑜𝑠 𝑑, 𝑞 =
 𝑑. 𝑞

 𝑑 𝑞
= 𝑑. 𝑞

for length-normalized 𝑞, 𝑑

39

Cosine similarity illustrated

40

Cosine similarity score

41

 A doc may have a high cosine score for a query even if it

does not contain all query terms

 We use the inverted index to speed up the computation

of the cosine score

Computing cosine scores

Sec. 6.3

42

tf-idf example: lnc.ltc

Term Query Document Prod

tf-raw tf-wt df idf wt n’lize tf-raw tf-wt wt n’lize

auto 0 0 5000 2.3 0 0 1 1 1 0.52 0

best 1 1 50000 1.3 1.3 0.34 0 0 0 0 0

car 1 1 10000 2.0 2.0 0.52 1 1 1 0.52 0.27

insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53

Document: car insurance auto insurance

Query: best car insurance

Exercise: what is N, the number of docs?

Score = 0+0+0.27+0.53 = 0.8

Doc length =

12 02 12 1.32 1.92

Sec. 6.4

43

tf-idf example: lnc.ltc

Term Query Document Prod

tf-raw tf-wt df idf wt n’lize tf-raw tf-wt wt n’lize

auto 0 0 5000 2.3 0 0 1 1 1 0.52 0

best 1 1 50000 1.3 1.3 0.34 0 0 0 0 0

car 1 1 10000 2.0 2.0 0.52 1 1 1 0.52 0.27

insurance 1 1 1000 3.0 3.0 0.78 2 1.3 1.3 0.68 0.53

Document: car insurance auto insurance

Query: best car insurance

Exercise: what is N, the number of docs?

Score = 0+0+0.27+0.53 = 0.8

Doc length =

12 02 12 1.32 1.92

Sec. 6.4

44

Variants of TF

45

Weighting scheme TF weight

binary {0,1}

raw frequency 𝑡𝑓𝑖,𝑗

log normalization 1 + log 𝑡𝑓𝑖,𝑗

double normalization 0.5 0.5 + 0.5
𝑡𝑓𝑖,𝑗

max
𝑖

𝑡𝑓𝑖,𝑗

double normalization K 𝐾 + 1 − 𝐾
𝑡𝑓𝑖,𝑗

max
𝑖

𝑡𝑓𝑖,𝑗

Variants of IDF

46

Weighting scheme IDF weight

unary 1

inverse frequency
log

𝑁

𝑛𝑖

inverse frequency smooth log 1 +
𝑁

𝑛𝑖

inverse frequency max log 1 +
max

𝑖
𝑛𝑖

𝑛𝑖

Probabilistic inverse frequency log
𝑁 − 𝑛𝑖
𝑛𝑖

TF-IDF weighting has many variants

Columns headed ‘n’ are acronyms for weight schemes.

Why is the base of the log in idf immaterial?

Sec. 6.4

Default

47

Weighting may differ in queries vs docs

 Many search engines allow for different weightings for

queries vs. docs

 SMART Notation: denotes the combination in use in an

engine, with the notation ddd.qqq

 A very standard weighting scheme is: lnc.ltc

Sec. 6.4

48

ddd.qqq: example lnc.ltn

 Document:

 l: logarithmic tf

 n: no idf

 c: cosine normalization

 Query:
 l: logarithmic tf

 t: idf (t in second column)

 n: no normalization

49

Isn’t it bad to not idf-weight the document?

Summary

 Represent the query as a weighted tf-idf vector

 Represent each doc as a weighted tf-idf vector

 Compute the similarity score of the query vector to doc

vectors

 May be different weighing for the query and docs

 Rank doc with respect to the query by score

 Return the top K (e.g., K = 10) to the user

50

Resources for today’s lecture

 IIR 6.2 – 6.4.3

 MIR 3.2.3 – 3.2.6

 http://www.miislita.com/information-retrieval-

tutorial/cosine-similarity-tutorial.html

 Term weighting and cosine similarity tutorial for SEO folk!

Ch. 6

51

http://www.miislita.com/information-retrieval-tutorial/cosine-similarity-tutorial.html

