Scoring (Vector Space Model) CE-324: Modern Information Retrieval Sharif University of Technology

M. Soleymani Fall 2015

Most slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

Outline

- Ranked retrieval
- Scoring documents
 - Term frequency
 - Collection statistics
 - Term weighting
 - Weighting schemes
 - Vector space scoring

Ranked retrieval

Boolean models:

- Queries have all been Boolean.
- Documents either match or don't.
- Boolean models are not good for the majority of users.
 - Most users incapable of writing Boolean queries.
 - a query language of operators and expressions
 - Most users don't want to wade through 1000s of results.
 - > This is particularly true of web search.

Problem with Boolean search: feast or famine

▶ Too few (=0) or too many unranked results.

- It takes a lot of skill to come up with a query that produces a manageable number of hits.
 - AND gives too few; OR gives too many

Ranked retrieval models

- Return an ordering over the (top) documents in the collection for a query
 - **Ranking** rather than a set of documents
 - Free text queries: query is just one or more words in a human language

In practice, ranked retrieval has normally been associated with free text queries and vice versa Feast or famine: not a problem in ranked retrieval

- When a system produces a ranked result set, large result sets are not an issue
 - We just show the top $k \ (\approx 10)$ results
 - We don't overwhelm the user
- Premise: the ranking algorithm works

Scoring as the basis of ranked retrieval

- Return in order the docs most likely to be useful to the searcher
- How can we rank-order docs in the collection with respect to a query?
 - Assign a score (e.g. in [0, 1]) to each document
 - measures how well doc and query "match"

Query-document matching scores

• Assigning a <u>score</u> to a query/document pair

Start with a one-term query

- Score 0 when query term does not occur in doc
- More frequent query term in doc gets higher score
- We will look at a number of alternatives for this.

Binary term-document incidence matrix

Each doc is represented by a binary vector $\in \{0,1\}^{|V|}$

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Term-document count matrices

Number of occurrences of a term in a document:

• Each doc is a **count vector** $\in \mathbb{N}^{|V|}$ (a column below)

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Bag of words model

- Vector representation doesn't consider the ordering of words in a doc
 - John is quicker than Mary and Mary is quicker than John have the same vectors
- This is called the <u>bag of words</u> model.
 - "recovering" positional information later in this course.
- For now: bag of words model

Term frequency tf

Term frequency tf_{t,d}: the number of times that term t occurs in doc d.

- How to compute query-doc match scores using $tf_{t,d}$?
 - Raw term frequency is not what we want:
 - A doc with tf=10 occurrence of a term is more relevant than a doc with tf=1.
 - \Box But not 10 times more relevant.
 - Relevance does not increase proportionally with $tf_{t,d}$.

frequency = count in IR

Log-frequency weighting

• The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases} 1 + \log_{10} t f_{t,d}, & t f_{t,d} > 0\\ 0, & otherwise \end{cases}$$

- Example:
 - ▶ $0 \rightarrow 0$
 - $\blacktriangleright \ | \rightarrow |$
 - ▶ 2 → I.3
 - ► $10 \rightarrow 2$
 - ▶ $1000 \rightarrow 4$

First idea

• Score for a doc-query pair (q, d_i) :

$$score(q, d_i) = \sum_{t \in q} w_{t,i} = \sum_{t \in q \cap d_i} (1 + \log_{10} t f_{t,i})$$

It is 0 if none of the query terms is present in doc.

Term specificity

- Weighting the terms differently according to their specificity:
 - Term specificity is based on the accuracy of the term as a descriptor of a doc topic
 - It can be quantified as an inverse function of the number of docs in which occur (inverse doc frequency)

Document frequency

- Rare terms can be more informative than frequent terms
 - Stop words are not informative
 - frequent terms in the collection (e.g., high, increase, line)
 - A doc containing them is more likely to be relevant than a doc that doesn't
 - But it's not a sure indicator of relevance
 - $\hfill\square$ High positive weights for such words
 - □ But lower weights than for rare terms
 - > a query term that is rare in the collection (e.g., *arachnocentric*)
 - A doc containing it is very likely to be relevant to the query
- The most informative terms are nouns or noun groups

Document frequency (cont'd)

- Frequent terms are less informative than rare terms
 - We want a high weight for rare terms
- We will use doc frequency (df) to capture this.

Collection frequency vs. Doc frequency

- Collection frequency of t: number of occurrences of t in the collection, counting multiple occurrences.
- Example:

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760

Which word is a better search term (and should get a higher weight)?

idf weight

- of df_t (document frequency of t): the number of docs that contain t
 - df_t is an inverse measure of informativeness of t
 - $df_t \leq N$
- idf (inverse document frequency of t)
 - ▶ log (N/df_t) instead of N/df_t to "dampen" the effect of idf.

$$\operatorname{idf}_t = \log_{10} N/\operatorname{df}_t$$

idf example, suppose N = 1 million

term	df _t	idf _t
calpurnia	Ι	
animal	100	
sunday	I,000	
fly	10,000	
under	100,000	
the	I,000,000	0

$$\operatorname{idf}_t = \log_{10} N/\operatorname{df}_t$$

There is one idf value for each term *t* in a collection.

idf example, suppose N = 1 million

term	df _t	idf _t
calpurnia	I	6
animal	100	4
sunday	I,000	3
fly	10,000	2
under	100,000	1
the	I,000,000	0

$$\operatorname{idf}_t = \log_{10} N/\operatorname{df}_t$$

There is one idf value for each term *t* in a collection.

Effect of idf on ranking

Does idf have an effect on ranking for one-term queries

- idf has no effect on ranking one term queries
 - affects for queries with at least two terms
 - Example query: capricious person
 - idf weighting makes occurrences of capricious count for much more in final doc ranking than occurrences of person.

TF-IDF weighting

- The <u>tf-idf</u> weight of a term is the product of its tf weight and its idf weight.
 - Increases with <u>number of occurrences</u> within a doc
 - Increases with the <u>rarity</u> of the term in the collection

 $tf.idf_{t,d} = tf_{t,d} \times idf_t$

- Best known weighting scheme in information retrieval
 - Alternative names: tf.idf, tf x idf

TF-IDF weighting

• A common tf-idf:

$$w_{t,i} = \begin{cases} (1 + \log_{10} tf_{t,i}) \times \log_{10} N/df_t, & t \in d_i \\ 0, & otherwise \end{cases}$$

Score for a document given a query via tf-idf:

$$score(q, d_i) = \sum_{t \in q} w_{t,i}$$
$$= \sum_{t \in q \cap d_i} (1 + \log_{10} \mathrm{tf}_{t,i}) \times \log_{10} N/\mathrm{df}_t$$

Document length normalization

Doc sizes might vary widely

- Problem: Longer docs are more likely to be retrieved
- Solution: divide the rank of each doc by its length
- How to compute document lengths:
 - Number of words

• Vector norms:
$$\|\vec{d}_j\| = \sqrt{\sum_{i=1}^m w_{i,j}^2}$$

Documents as vectors

- \triangleright |V|-dimensional vector space:
 - <u>Terms are axes</u> of the space
 - Docs are points or vectors in this space
- Very high-dimensional: tens of millions of dimensions for a web search engine
- > These are very sparse vectors (most entries are zero).

Binary \rightarrow count \rightarrow weight matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	5.25	3.18	0	0	0	0.35
Brutus	1.21	6.1	0	1	0	0
Caesar	8.59	2.54	0	1.51	0.25	0
Calpurnia	0	1.54	0	0	0	0
Cleopatra	2.85	0	0	0	0	0
mercy	1.51	0	1.9	0.12	5.25	0.88
worser	1.37	0	0.11	4.15	0.25	1.95

Each doc is now represented by a real-valued vector $(\in \mathbb{R}^{|V|})$ of tf-idf weights

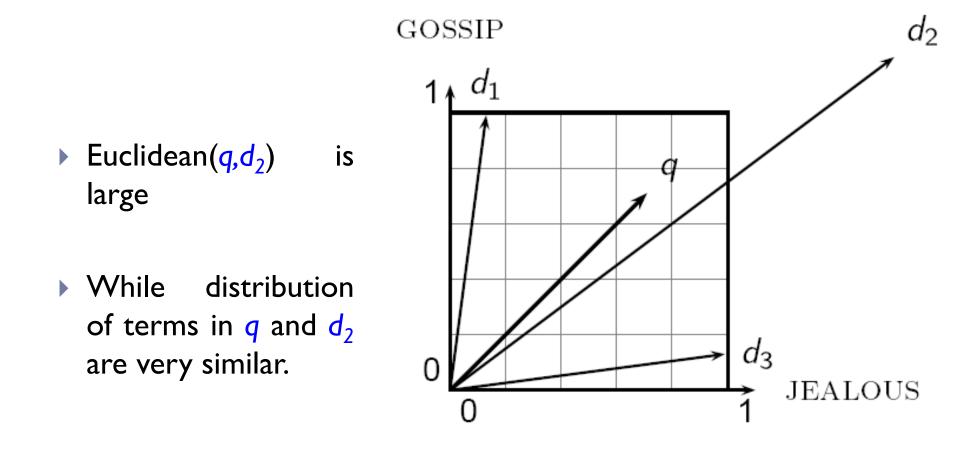
Queries as vectors

- Key idea I: Represent docs also as vectors
- Key idea 2: Rank docs according to their proximity to the query in this space
- proximity = similarity of vectors
- ▶ proximity ≈ inverse of distance
- To get away from you're-either-in-or-out Boolean model.
 - Instead: rank more relevant docs higher than less relevant docs

Formalizing vector space proximity

- First cut: distance between two points
 - distance between the end points of the two vectors
- Euclidean distance?
 - Euclidean distance is not a good idea ...
 - > It is large for vectors of different lengths.

Why distance is a bad idea



Use angle instead of distance

• Experiment:

- Take d and append it to itself. Call it d'.
- "Semantically" d and d' have the same content
- Euclidean distance between them can be quite large
- Angle between them is 0, corresponding to maximal similarity.
- Key idea: Rank docs according to angle with query.

From angles to cosines

- > The following two notions are equivalent.
 - Rank docs in <u>decreasing</u> order of the angle(q, d)
 - Rank docs in increasing order of <u>cosine(q, d)</u>
- Cosine is a monotonically decreasing function for the interval [0°, 180°]
 - But how and why should we be computing cosines?

Length normalization

Length (L₂ norm) of vectors:

$$\left\|\vec{x}\right\|_2 = \sqrt{\sum_i x_i^2}$$

(length-) normalized Vector: Dividing a vector by its length

- Makes a unit (length) vector
- Vector on surface of unit hypersphere

$$\frac{\vec{x}}{\|\vec{x}\|}$$

Length normalization

- d and d' (d appended to itself) have identical vectors after length-normalization.
 - Long and short docs now have comparable weights

Cosine similarity amongst 3 documents

Term frequencies (counts)

▶ How	similar	are	these	term
novels	?			affection
SaS: Se	nse and S	ensibil	lity	jealous
PaP: Pr	ide and Pi	rejudic	e	gossip
WH: V	Vuthering	Heigh	ts	wuthering

term	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

Note: To simplify this example, we don't do idf weighting.

3 documents example contd.

Log frequency weighting

After length normalization

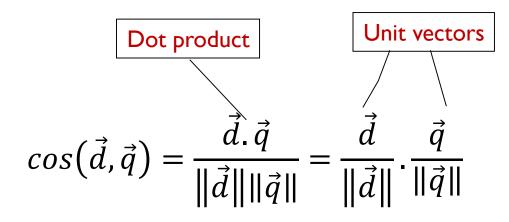
term	SaS	PaP	WH
affection	3.06	2.76	2.30
jealous	2.00	1.85	2.04
gossip	1.30	0	I.78
wuthering	0	0	2.58

term	term SaS PaF		WH
affection	0.789	0.832	0.524
jealous	0.515	0.555	0.465
gossip	0.335	0	0.405
wuthering	0	0	0.588

 $cos(SaS,PaP) \approx 0.94$ $cos(SaS,WH) \approx 0.79$ $cos(PaP,WH) \approx 0.69$

Why do we have cos(SaS,PaP) > cos(SaS,WH)?

Cosine (query,document)



- q_t : tf-idf weight of term t in query
- d_t : tf-idf weight of term t in doc
- $\cos(\vec{q}, \vec{d})$: cosine similarity of q and d(cosine of the angle between q and d.)

Cosine (query,document)

$$cos(\vec{d}, \vec{q}) = \frac{\vec{d}.\vec{q}}{\|\vec{d}\| \|\vec{q}\|} = \frac{\vec{d}}{\|\vec{d}\|} \cdot \frac{\vec{q}}{\|\vec{q}\|}$$
$$sim(d, q) = \frac{\vec{d}.\vec{q}}{\|\vec{d}\| \|\vec{q}\|} = \frac{\sum_{t=1}^{m} w_{t,d} \times w_{t,q}}{\sqrt{\sum_{t=1}^{m} w_{t,d}^2} \times \sqrt{\sum_{t=1}^{m} w_{t,q}^2}}$$

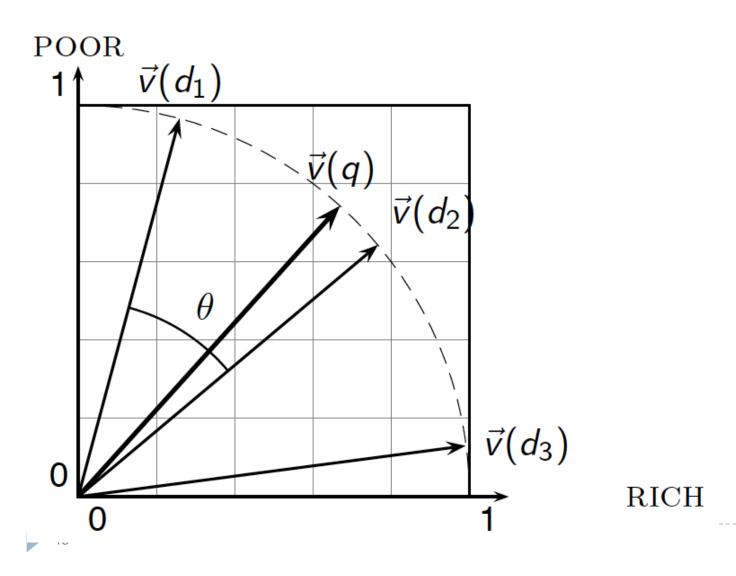
 $\cos(\vec{q}, \vec{d})$: cosine similarity of q and d(cosine of the angle between q and d.) Cosine for length-normalized vectors

For length-normalized vectors, cosine similarity is simply the dot product (or scalar product):

$$\cos\left(\vec{d},\vec{q}\right) = \frac{\vec{d}.\vec{q}}{\|\vec{d}\|\|\vec{q}\|} = \vec{d}.\vec{q}$$

for length-normalized q, d

Cosine similarity illustrated



Cosine similarity score

- A doc may have a high cosine score for a query even if it does not contain all query terms
- We use the inverted index to speed up the computation of the cosine score

Computing cosine scores

$\operatorname{COSINESCORE}(q)$

- 1 float Scores[N] = 0
- 2 float Length[N]
 - for each query term t
 - **do** calculate $w_{t,q}$ and fetch postings list for t **for each** pair $(d, tf_{t,d})$ in postings list **do** Scores $[d] + = w_{t,d} \times w_{t,q}$
- 7 Read the array Length
- 8 for each d
- 9 **do** Scores[d] = Scores[d]/Length[d]
- 10 return Top K components of Scores[]

3

4

5

6

tf-idf example: lnc.ltc

Document: *car insurance auto insurance* Query: *best car insurance*

Term	Query					Document				Prod	
	tf-raw						tf-raw				
auto	0						I				
best	I						0				
car	I						Ι				,
insurance							2				

Exercise: what is *N*, the number of docs?

Doc length = $\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$

Score = 0+0+0.27+0.53 = 0.8

tf-idf example: lnc.ltc

Document: *car insurance auto insurance* Query: *best car insurance*

Term	Query					Document				Prod	
	tf-raw	tf-wt	df	idf	wt	n'lize	tf-raw	tf-wt	wt	n'lize	
auto	0	0	5000	2.3	0	0	I	Ι	I	0.52	0
best	Ι	Ι	50000	1.3	1.3	0.34	0	0	0	0	0
car	Ι	Ι	10000	2.0	2.0	0.52	I	Ι	I	0.52	0.27
insurance	I	I	1000	3.0	3.0	0.78	2	١.3	1.3	0.68	0.53

Exercise: what is *N*, the number of docs?

Doc length = $\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$ Score = 0+0+0.27+0.53 = 0.8

Variants of TF

Weighting scheme	TF weight				
binary	{0,1}				
raw frequency	$tf_{i,j}$				
log normalization	$1 + \log t f_{i,j}$				
double normalization 0.5	$0.5 + 0.5 \frac{tf_{i,j}}{\max_i tf_{i,j}}$				
double normalization K	$K + (1 - K) \frac{tf_{i,j}}{\max_{i} tf_{i,j}}$				

Variants of IDF

Weighting scheme	IDF weight
unary	1
inverse frequency	$\log \frac{N}{n_i}$
inverse frequency smooth	$\log\left(1+\frac{N}{n_i}\right)$
inverse frequency max	$\log\left(1 + \frac{\max n_i}{n_i}\right)$
Probabilistic inverse frequency	$\log \frac{N-n_i}{n_i}$

TF-IDF weighting has many variants

Term f	requency	Docum	ent frequency	Normalization			
n (natural)	tf _{t,d}	n (no)	1	n (none)	1	Defaul	
l (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{df_t}$	c (cosine)	$\frac{1}{w_1^2 + w_2^2 + w_2^2$	$+w_{M}^{2}$	
a (augmented)	$0.5 + \frac{0.5 \times \mathrm{tf}_{t,d}}{\max_t(\mathrm{tf}_{t,d})}$	p (prob idf)	$\max\{0, \log \frac{N - \mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/u		
b (boolean)	$egin{cases} 1 & ext{if } ext{tf}_{t,d} > 0 \ 0 & ext{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLer}$ $lpha < 1$	ngth lpha ,	
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$						

Columns headed 'n' are acronyms for weight schemes. Why is the base of the log in idf immaterial?

Weighting may differ in queries vs docs

- Many search engines allow for different weightings for queries vs. docs
- SMART Notation: denotes the combination in use in an engine, with the notation ddd.qqq
 - A very standard weighting scheme is: <u>lnc.ltc</u>

ddd.qqq: example lnc.ltn

Document:

- I: logarithmic tf
- ▶ n: no idf
- c: cosine normalization
- Query:
 - I: logarithmic tf
 - t: idf (t in second column)
 - n: no normalization

Isn't it bad to not idf-weight the document?

Summary

- Represent the query as a weighted tf-idf vector
- Represent each doc as a weighted tf-idf vector
- Compute the similarity score of the query vector to doc vectors
 - May be different weighing for the query and docs
- Rank doc with respect to the query by score
- Return the top K (e.g., K = 10) to the user

Resources for today's lecture

- ▶ IIR 6.2 6.4.3
- ▶ MIR 3.2.3 3.2.6
- http://www.miislita.com/information-retrievaltutorial/cosine-similarity-tutorial.html
 - Term weighting and cosine similarity tutorial for SEO folk!