Scoring (Vector Space Model)

CE-324: Modern Information Retrieval
Sharif University of Technology

M. Soleymani
Fall 2015

Most slides have been adapted from: Profs. Manning, Nayak &
Raghavan (CS-276, Stanford)

Outline

» Ranked retrieval

» Scoring documents
Term frequency
Collection statistics
Term weighting

Weighting schemes
Vector space scoring

Ranked retrieval

» Boolean models:
Queries have all been Boolean.

Documents either match or don’t.

» Boolean models are not good for the majority of users.
Most users incapable of writing Boolean queries.
a query language of operators and expressions

Most users don’t want to wade through 1000s of results.

This is particularly true of web search.

Problem with Boolean search: feast or famine

» Too few (=0) or too many unranked results.

» It takes a lot of skill to come up with a query that
produces a manageable number of hits.

AND gives too few; OR gives too many

Ranked retrieval models
» Return an ordering over the (top) documents in the
collection for a query
Ranking rather than a set of documents

Free text queries: query is just one or more words in a
human language

» In practice, ranked retrieval has normally been associated
with free text queries and vice versa

Feast or famine: not a problem in ranked
retrieval

» When a system produces a ranked result set, large result
sets are not an issue

We just show the top k (= 10) results

We don’t overwhelm the user

» Premise: the ranking algorithm works

Scoring as the basis of ranked retrieval

» Return in order the docs most likely to be useful to the
searcher

» How can we rank-order docs in the collection with
respect to a query!?

Assign a score (e.g.in [0, |]) to each document

measures how well doc and query “match”

Query-document matching scores

» Assigning a score to a query/document pair

» Start with a one-term query
Score 0 when query term does not occur in doc

More frequent query term in doc gets higher score

» We will look at a number of alternatives for this.

Binary term-document incidence matrix

Each doc is represented by a binary vector € {0,1}V

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Term-document count matrices

» Number of occurrences of a term in a document:

Antony
Brutus
Caesar
Calpurnia
Cleopatra
mercy

worser

10

Antony and Cleopatra
157
4
232
0
57
2
2

Julius Caesar
73
157
227
10

The Tempest
0

R W O O O O

Hamlet

R O1 O O N B

Each doc is a count vector € N!V! (a column below)

Othello

L O1 O O B+~ O

Macbeth

o rrr O O +—» O

Bag of words model

» Vector representation doesn’t consider the ordering of
words in a doc

John is quicker than Mary and Mary is quicker than John
have the same vectors

» This is called the bag of words model.

“recovering” positional information later in this course.

» For now: bag of words model

11

Term frequency tf

» Term frequency tf; ;: the number of times that term t
occurs in doc d.

» How to compute query-doc match scores using tf; ;?

Raw term frequency is not what we want:

A doc with tf=10 occurrence of a term is more relevant than a doc
with tf=1.

But not 10 times more relevant.

Relevance does not increase proportionally with tf; ;.

12

Log-frequency weighting

» The log frequency weight of term t in d is

o 1+ logiotfia, tfea >0
td 0, otherwise

» Example:
0—-0
| — |
2— 1.3
10 — 2
1000 — 4

13

First idea

» Score for a doc-query pair (g, d;):

score(q,d;) = z Wi = 2 (1 + logy, tft,i)

teq teqnd;

» It is O if none of the query terms is present in doc.

Term specificity

» Weighting the terms differently according to their
specificity:
Term specificity is based on the accuracy of the term as a
descriptor of a doc topic

It can be quantified as an inverse function of the number of
docs in which occur (inverse doc frequency)

15

Document frequency

» Rare terms can be more informative than frequent terms
Stop words are not informative

frequent terms in the collection (e.g., high, increase, line)

A doc containing them is more likely to be relevant than a doc that
doesn’t

But it’s not a sure indicator of relevance
High positive weights for such words
But lower weights than for rare terms

a query term that is rare in the collection (e.g., arachnocentric)

A doc containing it is very likely to be relevant to the query

» The most informative terms are nouns or houn groups

16

Document frequency (cont’d)

» Frequent terms are less informative than rare terms

We want a high weight for rare terms

» We will use doc frequency (df) to capture this.

17

Collection frequency vs. Doc frequency

» Collection frequency of t: number of occurrences of t
in the collection, counting multiple occurrences.

» Example:
Word Collection frequency Document frequency
insurance 10440 3997
try 10422 8760

» Which word is a better search term (and should get a
higher weight)?

18

idf weight

» df. (document frequency of t): the number of docs that
contain t

df, is an inverse measure of informativeness of t
df, <N

» idf (inverse document frequency of t)
log (N/df) instead of N/df, to “dampen” the effect of idf.

ldft — 10g10 N/dft

AN

19 Will turn out the base of the log is immaterial.

idf example, suppose N = 1 million

term df, idf,
calpurnia I
animal 100
sunday 1,000
fly 10,000
under 100,000
the 1,000,000

idf, = log,, N/df,

There is one idf value for each term tin a collection.
20

idf example, suppose N = 1 million

term df, idf,

calpurnia | 6
animal 100 4
sunday 1,000 3
fly 10,000 2
under 100,000 1
the 1,000,000 0

idf, = log,, N/df,

There is one idf value for each term tin a collection.
21

Effect of idf on ranking

» Does idf have an effect on ranking for one-term queries

» idf has no effect on ranking one term queries
affects for queries with at least two terms
Example query: capricious person

idf weighting makes occurrences of capricious count for much more
in final doc ranking than occurrences of person.

22

TF-IDF weighting

» The tf-idf weight of a term is the product of its tf weight
and its idf weight.

Increases with number of occurrences within a doc

Increases with the rarity of the term in the collection
tf idft,d — tft,d X ldft

» Best known weighting scheme in information retrieval
Alternative names: tf.idf, tf x idf

23

TF-IDF weighting

» A common tf-idf:

Wy i

(1 +logyotfy;) X logio N/df,, t€d;
0, otherwise

» Score for a document given a query via tf-idf:

score(q,d;) = z Wy ;

teq

= z (1 + logyo tf, ;) X logyo N/df;

teqgnd;

24

Document length normalization

» Doc sizes might vary widely

» Problem: Longer docs are more likely to be retrieved

» Solution: divide the rank of each doc by its length

» How to compute document lengths:

Number of words

Vector norms: ||d;|| = \/Zl W

25

Documents as vectors

» |V|-dimensional vector space:

Terms are axes of the space

Docs are points or vectors in this space

» Very high-dimensional: tens of millions of dimensions for a
web search engine

» These are very sparse vectors (most entries are zero).

26

Binary — count — weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0
Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0
mercy 1.51 0 1.9 0.12 5.25 0.88
worser 1.37 0 0.11 4.15 0.25 1.95

Each doc is now represented by a real-valued vector
(€ RV)) of tf-idf weights

27

Queries as vectors

» Key idea |: Represent docs also as vectors

» Key idea 2: Rank docs according to their proximity to the
query in this space

» proximity = similarity of vectors

» proximity = inverse of distance

» To get away from you’re-either-in-or-out Boolean model.

Instead: rank more relevant docs higher than less relevant docs

28

mojtaba
Highlight
query

mojtaba
Typewritten Text

mojtaba
Typewritten Text

mojtaba
Typewritten Text

Formalizing vector space proximity

» First cut: distance between two points

distance between the end points of the two vectors

» Euclidean distance!?

Euclidean distance is not a good idea ...

It is large for vectors of different lengths.

29

mojtaba
Highlight

Why distance is a bad idea

GOSSIP c>

14

» Euclidean(q,d,) is
large

» While distribution
of terms in g and d,
are very similar.

JEALOUS

30

Use angle instead of distance

» Experiment:
Take d and append it to itself. Call it d'.

“Semantically” d and d’ have the same content
Euclidean distance between them can be quite large

Angle between them is 0, corresponding to maximal similarity.

» Key idea: Rank docs according to angle with query.

31

From angles to cosines

» The following two notions are equivalent.
Rank docs in decreasing order of the angle(q, d)

Rank docs in increasing order of cosine(q, d)

» Cosine is a monotonically decreasing function for the
interval [0°, 180°]

But how — and why — should we be computing cosines?

32

Length normalization

» Length (L, norm) of vectors:
Hsz Y Zixiz

» (length-) normalized Vector: Dividing a vector by its length
Makes a unit (length) vector

Vector on surface of unit hypersphere
-
X

111

33

Length normalization

» d and d’' (d appended to itself) have identical vectors
after length-normalization.

Long and short docs now have comparable weights

34

Cosine similarity amongst 3 documents

Term frequencies (counts)

. term SaS PaP WH

» How similar are these
I’IOVGIS’ affection 115 58 20
jealous 10 7 |

SaS: Sense and Sensibility
PaP: Pride and Prejudice gossip 2 0 6
WH: Wuthering Heights wuthering 0 0| 38

Note: To simplify this example, we don’t do idf weighting.

35

3 documents example contd.

Log frequency weighting

After length normalization

term SaS PaP WH term SaS PaP WH
affection 3.06 2.76 2.30 | | affection 0.789 0.832 0.524
jealous 2.00 1.85 2.04| |jealous 0.515 0.555 0.465
gossip 1.30 0 .78 | | gossip 0.335 0 0.405
wuthering 0 0 2.58 | | wuthering 0 0 0.588

36

Why do we have cos(SaS,PaP) > cos(SaS,WH)?

cos(SaS,PaP) =~ 0.94
cos(SaS,WH) = 0.79
cos(PaP,WH) = 0.69

Cosine (query,document)

Dot product ;ﬂt Veitors
r d.q d ¢
cos(d, = —

Idllngn||d|| N4l

q, . tf-idf weight of term t in query
d, : tf-idf weight of term t in doc

cos(q,d): cosine similarity of g and d
(cosine of the angle between g and d.)

37

Cosine (query,document)

L d.g d §
d’ = — = ——.—
cost @) = G~
sim(d, q) = d.q te1Weg X Wy g

i \/Zmlwtd \/zmlwtq

cos(q,d): cosine similarity of g and d
(cosine of the angle between g and d.)

38

Cosine for length-normalized vectors

» For length-normalized vectors, cosine similarity is simply
the dot product (or scalar product):

L d.g .
cos\d,q) =~—=——-=d.q
(44) [a]|llg]]

for length-normalized g, d

39

Cosine similarity illustrated

POOR
11 _f£d1)
/ : \gq') v(d»)
/ S
/L\Q//// \\

v(d3)

RICH

Cosine similarity score

» A doc may have a high cosine score for a query even if it
does not contain all query terms

» We use the inverted index to speed up the computation
of the cosine score

41

Computing cosine scores

COSINESCORE(q)
1 float Scores[N] =0
float Length[N]

for each query term t

do calculate w¢ o and fetch postings list for ¢
for each pair(d.tf;) in postings list
do Scores[d]+ = w; g X W 4

Read the array Length
for each d
do Scores|d| = Scores|[d]/Length|d]

return Top K components of Scoresl|

O O 00 NGy O B W N

—

N
N

ti-1df example: Inc.ltc

Document: car insurance auto insurance

Query: best car insurance

Term

Query

Document

Prod

tf-raw

auto

best

car

insurance

N|—|o|—

43

Exercise: what is N, the number of docs?

Doc length =12 402 +12+1.32 ~1.92
Score = 0+0+0.27+0.53 = 0.8

ti-1df example: Inc.ltc

Document: car insurance auto insurance

Query: best car insurance

Term Query Document Prod
tf-raw | tf-wt df idf | wt | n’lize | tf-raw | tf-wt wt n’lize

auto 0 0| 5000| 2.3 0 0 I I | | 0.52 0

best I | | 50000 | 1.3| 1.3| 0.34 0 0 0 0 0

car I || 10000 | 20| 2.0| 0.52 I I | | 0.52| 0.27

insurance I I 1000 3.0| 3.0| 0.78 2 .3 .3 0.68| 0.53

44

Exercise: what is N, the number of docs?

Doc length =12 402 +12+1.32 ~1.92

Score = 0+0+0.27+0.53 = 0.8

Variants of TF

45

Weighting scheme TF weight
binary {0,1}
raw frequency tfij
log normalization 1+ log tf;;
o tfi,
double normalization 0.5 05+ 0.5————
max tf; ;
l
o tfi
double normalization K K+ —-K)———
max tf; ;
l

Variants of IDF

46

Weighting scheme IDF weight
unary 1
' N
inverse frequency log —
n;
N
inverse frequency smooth log (1 + n_>
i
max n;
inverse frequency max log <1 + ln >
i
N — n;
Probabilistic inverse frequency log .
l

TF-IDF weighting has many variants

Term frequency

Document frequency

MNormalization

n (natural) tfr o n (no) 1 n (none)) Defal
| (logarithm) 1+ log(tf: q) t (idf) log % c (cosine))
N 2
a (augmented) 0.5+ Lﬂé?‘i p (prob idf) max{0,log Nafdf’} u (pivoted 1/u
max¢(tf; 4) ‘ unique)

b (boolean) L ifthed >0 b (byte size) 1/CharLength”

0 otherwise o1 ’
L (] 1+log(tfe 4)

(logave) Tioglverciiiea)

Columns headed ‘n’ are acronyms for weight schemes.

47

Why is the base of the log in idf immaterial?

Weighting may differ in queries vs docs

» Many search engines allow for different weightings for
queries vs. docs

» SMART Notation: denotes the combination in use in an
engine, with the notation ddd.qqq

A very standard weighting scheme is: Inc.ltc

48

ddd.qqq: example Inc.ltn

» Document;

|: logarithmic tf
n: no idf
c: cosine normalization

» Query:
|: logarithmic tf
t:idf (t in second column)
n: no normalization

Isn’t it bad to not idf-weight the document?

49

Summary

» Represent the query as a weighted tf-idf vector
» Represent each doc as a weighted tf-idf vector

» Compute the similarity score of the query vector to doc
vectors

May be different weighing for the query and docs
» Rank doc with respect to the query by score
» Return the top K (e.g., K = 10) to the user

50

Resources for today’s lecture

» IR 6.2 -6.4.3
» MIR 3.2.3 -3.2.6
4

Term weighting and cosine similarity tutorial for SEO folk!

51

http://www.miislita.com/information-retrieval-tutorial/cosine-similarity-tutorial.html

