Introduction to Information Retrieval http://informationretrieval.org

IIR 14: Vector Space Classification

Hinrich Schütze

Center for Information and Language Processing, University of Munich

2013-05-28

Overview

2 Intro vector space classification

Rocchio 3

6 > two classes

Outline

• Vector space classification: Basic idea of doing text classification for documents that are represented as vectors

- Vector space classification: Basic idea of doing text classification for documents that are represented as vectors
- Rocchio classifier: Rocchio relevance feedback idea applied to text classification

- Vector space classification: Basic idea of doing text classification for documents that are represented as vectors
- Rocchio classifier: Rocchio relevance feedback idea applied to text classification
- k nearest neighbor classification

- Vector space classification: Basic idea of doing text classification for documents that are represented as vectors
- Rocchio classifier: Rocchio relevance feedback idea applied to text classification
- k nearest neighbor classification
- Linear classifiers

- Vector space classification: Basic idea of doing text classification for documents that are represented as vectors
- Rocchio classifier: Rocchio relevance feedback idea applied to text classification
- k nearest neighbor classification
- Linear classifiers
- More than two classes

Outline

2 Intro vector space classification

• Each document is a vector, one component for each term.

- Each document is a vector, one component for each term.
- Terms are axes.
- High dimensionality: 100,000s of dimensions

- Each document is a vector, one component for each term.
- Terms are axes.
- High dimensionality: 100,000s of dimensions
- Normalize vectors (documents) to unit length

- Each document is a vector, one component for each term.
- Terms are axes.
- High dimensionality: 100,000s of dimensions
- Normalize vectors (documents) to unit length
- How can we do classification in this space?

Basic text classification setup

• As before, the training set is a set of documents, each labeled with its class.

- As before, the training set is a set of documents, each labeled with its class.
- In vector space classification, this set corresponds to a labeled set of points or vectors in the vector space.

- As before, the training set is a set of documents, each labeled with its class.
- In vector space classification, this set corresponds to a labeled set of points or vectors in the vector space.
- Premise 1: Documents in the same class form a contiguous region.

- As before, the training set is a set of documents, each labeled with its class.
- In vector space classification, this set corresponds to a labeled set of points or vectors in the vector space.
- Premise 1: Documents in the same class form a contiguous region.
- Premise 2: Documents from different classes don't overlap.

- As before, the training set is a set of documents, each labeled with its class.
- In vector space classification, this set corresponds to a labeled set of points or vectors in the vector space.
- Premise 1: Documents in the same class form a contiguous region.
- Premise 2: Documents from different classes don't overlap.
- We define lines, surfaces, hypersurfaces to divide regions.

Should the document * be assigned to China, UK or Kenya?

Find separators between the classes

Based on these separators: * should be assigned to China

How do we find separators that do a good job at classifying new documents like \star ? – Main topic of today

Outline

3 Rocchio

5 Linear classifiers

6 > two classes

- In relevance feedback, the user marks documents as relevant/nonrelevant.
- Relevant/nonrelevant can be viewed as classes or categories.
- For each document, the user decides which of these two classes is correct.
- The IR system then uses these class assignments to build a better query ("model") of the information need ...
- ... and returns better documents.
- Relevance feedback is a form of text classification.

Using Rocchio for vector space classification

• The principal difference between relevance feedback and text classification:

Using Rocchio for vector space classification

- The principal difference between relevance feedback and text classification:
 - The training set is given as part of the input in text classification.

Using Rocchio for vector space classification

- The principal difference between relevance feedback and text classification:
 - The training set is given as part of the input in text classification.
 - It is interactively created in relevance feedback.

Rocchio classification: Basic idea

Rocchio classification: Basic idea

• Compute a centroid for each class

Rocchio classification: Basic idea

• Compute a centroid for each class

• The centroid is the average of all documents in the class.

Rocchio classification: Basic idea

- Compute a centroid for each class
 - The centroid is the average of all documents in the class.
- Assign each test document to the class of its closest centroid.

Linear classifie

> two classes

Recall definition of centroid

lassifiers >

Recall definition of centroid

$$ec{\mu}(c) = rac{1}{|D_c|} \sum_{d \in D_c} ec{v}(d)$$

where D_c is the set of all documents that belong to class c and $\vec{v}(d)$ is the vector space representation of d.

Rocchio illustrated: $a_1 = a_2, b_1 = b_2, c_1 = c_2$

Rocchio algorithm

Rocchio algorithm

TRAINROCCHIO(\mathbb{C}, \mathbb{D}) 1 for each $c_j \in \mathbb{C}$ 2 do $D_j \leftarrow \{d : \langle d, c_j \rangle \in \mathbb{D}\}$ 3 $\vec{\mu}_j \leftarrow \frac{1}{|D_j|} \sum_{d \in D_j} \vec{v}(d)$ 4 return $\{\vec{\mu}_1, \dots, \vec{\mu}_J\}$

APPLYROCCHIO
$$\{\{\vec{\mu}_1, \dots, \vec{\mu}_J\}, d\}$$

1 **return** arg min_j $|\vec{\mu}_j - \vec{v}(d)|$

Rocchio properties

• Rocchio forms a simple representation for each class: the centroid

- Rocchio forms a simple representation for each class: the centroid
 - We can interpret the centroid as the prototype of the class.

- Rocchio forms a simple representation for each class: the centroid
 - We can interpret the centroid as the prototype of the class.
- Classification is based on similarity to / distance from centroid/prototype.

Rocchio properties

- Rocchio forms a simple representation for each class: the centroid
 - We can interpret the centroid as the prototype of the class.
- Classification is based on similarity to / distance from centroid/prototype.
- Does not guarantee that classifications are consistent with the training data!

Time complexity of Rocchio

Time complexity of Rocchio

mode	time complexity
training	$\Theta(\mathbb{D} L_{ave} + \mathbb{C} V) pprox \Theta(\mathbb{D} L_{ave})$
testing	$\Theta(L_{a}+ \mathbb{C} M_{a})pprox\Theta(\mathbb{C} M_{a})$

Rocchio vs. Naive Bayes

Rocchio vs. Naive Bayes

• In many cases, Rocchio performs worse than Naive Bayes.

Rocchio vs. Naive Bayes

- In many cases, Rocchio performs worse than Naive Bayes.
- One reason: Rocchio does not handle nonconvex, multimodal classes correctly.

Linear

> two class

Linear

> two class

Linear

> two class

> two classe

N Line

> two classe

N Line

> two classe

NN Line

- A is centroid of the a's, B is centroid of the b's.
- The point o is closer to A than to B.
- But o is a better fit for the b class.
- A is a multimodal class with two prototypes.
- But in Rocchio we only have one prototype.

Outline

Recap

Intro vector space classification

3 Rocchio

5 Linear classifiers

6 > two classes

kNN classification

• kNN classification is another vector space classification method.

- kNN classification is another vector space classification method.
- It also is very simple and easy to implement.

- kNN classification is another vector space classification method.
- It also is very simple and easy to implement.
- kNN is more accurate (in most cases) than Naive Bayes and Rocchio.

- kNN classification is another vector space classification method.
- It also is very simple and easy to implement.
- kNN is more accurate (in most cases) than Naive Bayes and Rocchio.
- If you need to get a pretty accurate classifier up and running in a short time ...

- kNN classification is another vector space classification method.
- It also is very simple and easy to implement.
- kNN is more accurate (in most cases) than Naive Bayes and Rocchio.
- If you need to get a pretty accurate classifier up and running in a short time ...
- ... and you don't care about efficiency that much

- kNN classification is another vector space classification method.
- It also is very simple and easy to implement.
- kNN is more accurate (in most cases) than Naive Bayes and Rocchio.
- If you need to get a pretty accurate classifier up and running in a short time ...
- ... and you don't care about efficiency that much
- ... use kNN.

kNN classification

• kNN = k nearest neighbors

- kNN = k nearest neighbors
- kNN classification rule for k = 1 (1NN): Assign each test document to the class of its nearest neighbor in the training set.

Recap Intro vector space classification Rocchio kNN Linear classifiers > two classes kNN classification Rocchio Rocchio Rocchio Rocchio Rocchio

- kNN = k nearest neighbors
- kNN classification rule for k = 1 (1NN): Assign each test document to the class of its nearest neighbor in the training set.
- 1NN is not very robust one document can be mislabeled or atypical.

Recap Intro vector space classification Rocchio kNN Linear classifiers > two classes kNN classification

- kNN = k nearest neighbors
- kNN classification rule for k = 1 (1NN): Assign each test document to the class of its nearest neighbor in the training set.
- 1NN is not very robust one document can be mislabeled or atypical.
- kNN classification rule for k > 1 (kNN): Assign each test document to the majority class of its k nearest neighbors in the training set.

Recap Intro vector space classification Rocchio kNN Linear classifiers > two classes kNN classification

- kNN = k nearest neighbors
- kNN classification rule for k = 1 (1NN): Assign each test document to the class of its nearest neighbor in the training set.
- 1NN is not very robust one document can be mislabeled or atypical.
- kNN classification rule for k > 1 (kNN): Assign each test document to the majority class of its k nearest neighbors in the training set.
- Rationale of kNN: contiguity hypothesis

Recap Intro vector space classification Rocchio kNN Linear classifiers > two classes kNN classification classification classification classification classification

- kNN = k nearest neighbors
- kNN classification rule for k = 1 (1NN): Assign each test document to the class of its nearest neighbor in the training set.
- 1NN is not very robust one document can be mislabeled or atypical.
- kNN classification rule for k > 1 (kNN): Assign each test document to the majority class of its k nearest neighbors in the training set.
- Rationale of kNN: contiguity hypothesis
 - We expect a test document *d* to have the same label as the training documents located in the local region surrounding *d*.

Probabilistic kNN

 Probabilistic version of kNN: P(c|d) = fraction of k neighbors of d that are in c Probabilistic kNN

- Probabilistic version of kNN: P(c|d) = fraction of k neighbors of d that are in c
- kNN classification rule for probabilistic kNN: Assign d to class c with highest P(c|d)

kNN is based on Voronoi tessellation

kNN

kNN is based on Voronoi tessellation

kNN

kNN is based on Voronoi tessellation

kNN algorithm

TRAIN-KNN(\mathbb{C}, \mathbb{D})

- 1 $\mathbb{D}' \leftarrow \operatorname{Preprocess}(\mathbb{D})$
- 2 $k \leftarrow \text{Select-k}(\mathbb{C}, \mathbb{D}')$
- 3 return \mathbb{D}', k

Apply-kNN(\mathbb{D}', k, d)

- 1 $S_k \leftarrow \text{COMPUTENEARESTNEIGHBORS}(\mathbb{D}', k, d)$
- 2 for each $c_j \in \mathbb{C}(\mathbb{D}')$
- 3 do $p_j \leftarrow |S_k \cap c_j|/k$
- 4 return arg max_j p_j

Exercise

How is star classified by: (i) 1-NN (ii) 3-NN (iii) 9-NN (iv) 15-NN (v) Rocchio?

Time complexity of kNN

kNN

 $\begin{array}{ll} \text{training} & \Theta(|\mathbb{D}|L_{\text{ave}}) \\ \text{testing} & \Theta(L_{\text{a}}+|\mathbb{D}|M_{\text{ave}}M_{\text{a}}) = \Theta(|\mathbb{D}|M_{\text{ave}}M_{\text{a}}) \end{array}$

 $\begin{array}{ll} \mbox{training} & \Theta(|\mathbb{D}|L_{\rm ave}) \\ \mbox{testing} & \Theta(L_{\rm a}+|\mathbb{D}|M_{\rm ave}M_{\rm a}) = \Theta(|\mathbb{D}|M_{\rm ave}M_{\rm a}) \end{array}$

• kNN test time proportional to the size of the training set!

kNN

 $\begin{array}{ll} \text{training} & \Theta(|\mathbb{D}|L_{\text{ave}}) \\ \text{testing} & \Theta(L_{\text{a}}+|\mathbb{D}|M_{\text{ave}}M_{\text{a}}) = \Theta(|\mathbb{D}|M_{\text{ave}}M_{\text{a}}) \end{array}$

• kNN test time proportional to the size of the training set!

kNN

• The larger the training set, the longer it takes to classify a test document.

 $\begin{array}{ll} \text{training} & \Theta(|\mathbb{D}|L_{\text{ave}}) \\ \text{testing} & \Theta(L_{\text{a}}+|\mathbb{D}|M_{\text{ave}}M_{\text{a}}) = \Theta(|\mathbb{D}|M_{\text{ave}}M_{\text{a}}) \end{array}$

• kNN test time proportional to the size of the training set!

kNN

- The larger the training set, the longer it takes to classify a test document.
- kNN is inefficient for very large training sets.

 $\begin{array}{ll} \text{training} & \Theta(|\mathbb{D}|L_{\text{ave}}) \\ \text{testing} & \Theta(L_{\text{a}}+|\mathbb{D}|M_{\text{ave}}M_{\text{a}}) = \Theta(|\mathbb{D}|M_{\text{ave}}M_{\text{a}}) \end{array}$

• kNN test time proportional to the size of the training set!

kNN

- The larger the training set, the longer it takes to classify a test document.
- kNN is inefficient for very large training sets.
- Question: Can we divide up the training set into regions, so that we only have to search in one region to do kNN classification for a given test document? (which perhaps would give us better than linear time complexity)

No training necessary

- No training necessary
 - But linear preprocessing of documents is as expensive as training Naive Bayes.

- No training necessary
 - But linear preprocessing of documents is as expensive as training Naive Bayes.
 - We always preprocess the training set, so in reality training time of kNN is linear.

- No training necessary
 - But linear preprocessing of documents is as expensive as training Naive Bayes.
 - We always preprocess the training set, so in reality training time of kNN is linear.
- kNN is very accurate if training set is large.

- No training necessary
 - But linear preprocessing of documents is as expensive as training Naive Bayes.
 - We always preprocess the training set, so in reality training time of kNN is linear.
- kNN is very accurate if training set is large.
- Optimality result: asymptotically zero error if Bayes rate is zero.

- No training necessary
 - But linear preprocessing of documents is as expensive as training Naive Bayes.
 - We always preprocess the training set, so in reality training time of kNN is linear.
- kNN is very accurate if training set is large.
- Optimality result: asymptotically zero error if Bayes rate is zero.
- But kNN can be very inaccurate if training set is small.

Outline

Recap

3 Rocchio

5 Linear classifiers

6 > two classes

• Definition:

- Definition:
 - A linear classifier computes a linear combination or weighted sum ∑_i w_ix_i of the feature values.

- Definition:
 - A linear classifier computes a linear combination or weighted sum ∑_i w_ix_i of the feature values.
 - Classification decision: $\sum_{i} w_i x_i > \theta$?

- Definition:
 - A linear classifier computes a linear combination or weighted sum ∑_i w_ix_i of the feature values.
 - Classification decision: $\sum_i w_i x_i > \theta$?
 - ... where θ (the threshold) is a parameter.

- Definition:
 - A linear classifier computes a linear combination or weighted sum ∑_i w_ix_i of the feature values.
 - Classification decision: $\sum_i w_i x_i > \theta$?
 - . . . where θ (the threshold) is a parameter.
- (First, we only consider binary classifiers.)

- Definition:
 - A linear classifier computes a linear combination or weighted sum ∑_i w_ix_i of the feature values.
 - Classification decision: $\sum_i w_i x_i > \theta$?
 - ... where θ (the threshold) is a parameter.
- (First, we only consider binary classifiers.)
- Geometrically, this corresponds to a line (2D), a plane (3D) or a hyperplane (higher dimensionalities), the separator.

- Definition:
 - A linear classifier computes a linear combination or weighted sum ∑_i w_ix_i of the feature values.
 - Classification decision: $\sum_i w_i x_i > \theta$?
 - ... where θ (the threshold) is a parameter.
- (First, we only consider binary classifiers.)
- Geometrically, this corresponds to a line (2D), a plane (3D) or a hyperplane (higher dimensionalities), the separator.
- We find this separator based on training set.

- Definition:
 - A linear classifier computes a linear combination or weighted sum ∑_i w_ix_i of the feature values.
 - Classification decision: $\sum_i w_i x_i > \theta$?
 - ... where θ (the threshold) is a parameter.
- (First, we only consider binary classifiers.)
- Geometrically, this corresponds to a line (2D), a plane (3D) or a hyperplane (higher dimensionalities), the separator.
- We find this separator based on training set.
- Methods for finding separator: Perceptron, Rocchio, Naive Bayes – as we will explain on the next slides

- Definition:
 - A linear classifier computes a linear combination or weighted sum ∑_i w_ix_i of the feature values.
 - Classification decision: $\sum_i w_i x_i > \theta$?
 - ... where θ (the threshold) is a parameter.
- (First, we only consider binary classifiers.)
- Geometrically, this corresponds to a line (2D), a plane (3D) or a hyperplane (higher dimensionalities), the separator.
- We find this separator based on training set.
- Methods for finding separator: Perceptron, Rocchio, Naive Bayes – as we will explain on the next slides
- Assumption: The classes are linearly separable.

A linear classifier in 1D

• A linear classifier in 1D is a point described by the equation $w_1d_1 = \theta$ chio kNN

Linear classifiers

A linear classifier in 1D

- A linear classifier in 1D is a point described by the equation $w_1d_1 = \theta$
- The point at θ/w_1

n Rocchio

NN Linear classifiers

A linear classifier in 1D

- A linear classifier in 1D is a point described by the equation $w_1d_1 = \theta$
- The point at θ/w_1
- Points (d₁) with w₁d₁ ≥ θ are in the class c.

A linear classifier in 1D

- A linear classifier in 1D is a point described by the equation $w_1d_1 = \theta$
- The point at θ/w_1
- Points (d₁) with w₁d₁ ≥ θ are in the class c.
- Points (d₁) with w₁d₁ < θ are in the complement class *c*.

 A linear classifier in 2D is a line described by the equation $w_1d_1 + w_2d_2 = \theta$

A linear classifier in 2D

- A linear classifier in 2D is a line described by the equation $w_1d_1 + w_2d_2 = \theta$
- Example for a 2D linear classifier

A linear classifier in 2D

- A linear classifier in 2D is a line described by the equation $w_1d_1 + w_2d_2 = \theta$
- Example for a 2D linear classifier
- Points $(d_1 \ d_2)$ with $w_1d_1 + w_2d_2 \ge \theta$ are in the class c.

A linear classifier in 2D

- A linear classifier in 2D is a line described by the equation $w_1d_1 + w_2d_2 = \theta$
- Example for a 2D linear classifier
- Points $(d_1 \ d_2)$ with $w_1d_1 + w_2d_2 \ge \theta$ are in the class c.
- Points (d₁ d₂) with w₁d₁ + w₂d₂ < θ are in the complement class c̄.

A linear classifier in 3D

A linear classifier in 3D is a plane described by the equation $w_1d_1 + w_2d_2 + w_3d_3 = \theta$

A linear classifier in 3D

• A linear classifier in 3D is a plane described by the equation

 $w_1d_1+w_2d_2+w_3d_3=\theta$

• Example for a 3D linear classifier

A linear classifier in 3D

 A linear classifier in 3D is a plane described by the equation

 $w_1d_1+w_2d_2+w_3d_3=\theta$

- Example for a 3D linear classifier
- Points $(d_1 \ d_2 \ d_3)$ with $w_1d_1 + w_2d_2 + w_3d_3 \ge \theta$ are in the class *c*.

A linear classifier in 3D

 A linear classifier in 3D is a plane described by the equation

 $w_1d_1+w_2d_2+w_3d_3=\theta$

- Example for a 3D linear classifier
- Points $(d_1 \ d_2 \ d_3)$ with $w_1d_1 + w_2d_2 + w_3d_3 \ge \theta$ are in the class c.
- Points (d₁ d₂ d₃) with w₁d₁ + w₂d₂ + w₃d₃ < θ are in the complement class c̄.

> two classes

Rocchio as a linear classifier

> two classes

Rocchio as a linear classifier

Rocchio is a linear classifier defined by:

$$\sum_{i=1}^{M} w_i d_i = \vec{w} \, \vec{d} = \theta$$

where \vec{w} is the normal vector $\vec{\mu}(c_1) - \vec{\mu}(c_2)$ and $\theta = 0.5 * (|\vec{\mu}(c_1)|^2 - |\vec{\mu}(c_2)|^2).$

Naive Bayes as a linear classifier

Naive Bayes as a linear classifier

Multinomial Naive Bayes is a linear classifier (in log space) defined by:

$$\sum_{i=1}^{M} w_i d_i = \theta$$

where $w_i = \log[\hat{P}(t_i|c)/\hat{P}(t_i|\bar{c})]$, $d_i =$ number of occurrences of t_i in d, and $\theta = -\log[\hat{P}(c)/\hat{P}(\bar{c})]$. Here, the index i, $1 \le i \le M$, refers to terms of the vocabulary (not to positions in d as k did in our original definition of Naive Bayes)

 Classification decision based on majority of k nearest neighbors.

- Classification decision based on majority of k nearest neighbors.
- The decision boundaries between classes are piecewise linear . . .

- Classification decision based on majority of k nearest neighbors.
- The decision boundaries between classes are piecewise linear . . .
- ... but they are in general not linear classifiers that can be described as $\sum_{i=1}^{M} w_i d_i = \theta.$

Example of a linear two-class classifier

ti	Wi	d_{1i}	d _{2i}	ti	Wi	d_{1i}	d _{2i}
prime	0.70	0	1	dlrs	-0.71	1	1
rate	0.67	1	0	world	-0.35	1	0
interest	0.63	0	0	sees	-0.33	0	0
rates	0.60	0	0	year	-0.25	0	0
discount	0.46	1	0	group	-0.24	0	0
bundesbank	0.43	0	0	dlr	-0.24	0	0

- This is for the class interest in Reuters-21578.
- For simplicity: assume a simple 0/1 vector representation
- d1: "rate discount dlrs world"
- d₂: "prime dlrs"
- θ = 0
- Exercise: Which class is d₁ assigned to? Which class is d₂ assigned to?

Example of a linear two-class classifier

ti	Wi	d_{1i}	d _{2i}	ti	Wi	d_{1i}	d _{2i}
prime	0.70	0	1	dlrs	-0.71	1	1
rate	0.67	1	0	world	-0.35	1	0
interest	0.63	0	0	sees	-0.33	0	0
rates	0.60	0	0	year	-0.25	0	0
discount	0.46	1	0	group	-0.24	0	0
bundesbank	0.43	0	0	dlr	-0.24	0	0

- This is for the class interest in Reuters-21578.
- For simplicity: assume a simple 0/1 vector representation
- d1: "rate discount dlrs world"
- d₂: "prime dlrs"
- θ = 0
- Exercise: Which class is d₁ assigned to? Which class is d₂ assigned to?

Example of a linear two-class classifier

ti	Wi	d_{1i}	d _{2i}	ti	Wi	d_{1i}	d _{2i}
prime	0.70	0	1	dlrs	-0.71	1	1
rate	0.67	1	0	world	-0.35	1	0
interest	0.63	0	0	sees	-0.33	0	0
rates	0.60	0	0	year	-0.25	0	0
discount	0.46	1	0	group	-0.24	0	0
bundesbank	0.43	0	0	dlr	-0.24	0	0

- This is for the class interest in Reuters-21578.
- For simplicity: assume a simple 0/1 vector representation
- d1: "rate discount dlrs world"
- d₂: "prime dlrs"
- θ = 0
- Exercise: Which class is d₁ assigned to? Which class is d₂ assigned to?

Example of a linear two-class classifier

ti	Wi	d_{1i}	d _{2i}	ti	Wi	d_{1i}	d _{2i}
prime	0.70	0	1	dlrs	-0.71	1	1
rate	0.67	1	0	world	-0.35	1	0
interest	0.63	0	0	sees	-0.33	0	0
rates	0.60	0	0	year	-0.25	0	0
discount	0.46	1	0	group	-0.24	0	0
bundesbank	0.43	0	0	dlr	-0.24	0	0

- This is for the class interest in Reuters-21578.
- For simplicity: assume a simple 0/1 vector representation
- d₁: "rate discount dlrs world"
- d₂: "prime dlrs"
- θ = 0
- Exercise: Which class is d_1 assigned to? Which class is d_2 assigned to?
- We assign document \vec{d}_1 "rate discount dlrs world" to *interest* since $\vec{w}^T \vec{d}_1 = 0.67 \cdot 1 + 0.46 \cdot 1 + (-0.71) \cdot 1 + (-0.35) \cdot 1 = 0.07 > 0 = \theta$.
- We assign \vec{d}_2 "prime dlrs" to the complement class (not in *interest*) since $\vec{w}^T \vec{d}_2 = -0.01 \le \theta$.

 In terms of actual computation, there are two types of learning algorithms.

- In terms of actual computation, there are two types of learning algorithms.
- (i) Simple learning algorithms that estimate the parameters of the classifier directly from the training data, often in one linear pass.

- In terms of actual computation, there are two types of learning algorithms.
- (i) Simple learning algorithms that estimate the parameters of the classifier directly from the training data, often in one linear pass.
 - Naive Bayes, Rocchio, kNN are all examples of this.

- In terms of actual computation, there are two types of learning algorithms.
- (i) Simple learning algorithms that estimate the parameters of the classifier directly from the training data, often in one linear pass.
 - Naive Bayes, Rocchio, kNN are all examples of this.
- (ii) Iterative algorithms

- In terms of actual computation, there are two types of learning algorithms.
- (i) Simple learning algorithms that estimate the parameters of the classifier directly from the training data, often in one linear pass.
 - Naive Bayes, Rocchio, kNN are all examples of this.
- (ii) Iterative algorithms
 - Support vector machines

- In terms of actual computation, there are two types of learning algorithms.
- (i) Simple learning algorithms that estimate the parameters of the classifier directly from the training data, often in one linear pass.
 - Naive Bayes, Rocchio, kNN are all examples of this.
- (ii) Iterative algorithms
 - Support vector machines
 - Perceptron (example available as PDF on website: http://cislmu.org)

- In terms of actual computation, there are two types of learning algorithms.
- (i) Simple learning algorithms that estimate the parameters of the classifier directly from the training data, often in one linear pass.
 - Naive Bayes, Rocchio, kNN are all examples of this.
- (ii) Iterative algorithms
 - Support vector machines
 - Perceptron (example available as PDF on website: http://cislmu.org)
- The best performing learning algorithms usually require iterative learning.

NN Linear classifiers

Perceptron update rule

• Randomly initialize linear separator \vec{w}

- Randomly initialize linear separator \vec{w}
- Do until convergence:

- Randomly initialize linear separator \vec{w}
- Do until convergence:
 - Pick data point \vec{x}

- Randomly initialize linear separator \vec{w}
- Do until convergence:
 - Pick data point \vec{x}
 - If sign $(\vec{w}^T \vec{x})$ is correct class (1 or -1): do nothing

- Randomly initialize linear separator \vec{w}
- Do until convergence:
 - Pick data point \vec{x}
 - If sign $(\vec{w}^T \vec{x})$ is correct class (1 or -1): do nothing
 - Otherwise: $\vec{w} = \vec{w} \operatorname{sign}(\vec{w}^{\,\vec{T}}\vec{x})\vec{x}$

• For linearly separable training sets: there are infinitely many separating hyperplanes.

- For linearly separable training sets: there are infinitely many separating hyperplanes.
- They all separate the training set perfectly

- For linearly separable training sets: there are infinitely many separating hyperplanes.
- They all separate the training set perfectly
- ... but they behave differently on test data.

- For linearly separable training sets: there are infinitely many separating hyperplanes.
- They all separate the training set perfectly
- ... but they behave differently on test data.
- Error rates on new data are low for some, high for others.

- For linearly separable training sets: there are infinitely many separating hyperplanes.
- They all separate the training set perfectly
- ... but they behave differently on test data.
- Error rates on new data are low for some, high for others.
- How do we find a low-error separator?

- For linearly separable training sets: there are infinitely many separating hyperplanes.
- They all separate the training set perfectly
- ... but they behave differently on test data.
- Error rates on new data are low for some, high for others.
- How do we find a low-error separator?
- Perceptron: generally bad; Naive Bayes, Rocchio: ok; linear SVM: good

• Many common text classifiers are linear classifiers: Naive Bayes, Rocchio, logistic regression, linear support vector machines etc.

- Many common text classifiers are linear classifiers: Naive Bayes, Rocchio, logistic regression, linear support vector machines etc.
- Each method has a different way of selecting the separating hyperplane

- Many common text classifiers are linear classifiers: Naive Bayes, Rocchio, logistic regression, linear support vector machines etc.
- Each method has a different way of selecting the separating hyperplane
 - Huge differences in performance on test documents

- Many common text classifiers are linear classifiers: Naive Bayes, Rocchio, logistic regression, linear support vector machines etc.
- Each method has a different way of selecting the separating hyperplane
 - Huge differences in performance on test documents
- Can we get better performance with more powerful nonlinear classifiers?

- Many common text classifiers are linear classifiers: Naive Bayes, Rocchio, logistic regression, linear support vector machines etc.
- Each method has a different way of selecting the separating hyperplane
 - Huge differences in performance on test documents
- Can we get better performance with more powerful nonlinear classifiers?
- Not in general: A given amount of training data may suffice for estimating a linear boundary, but not for estimating a more complex nonlinear boundary.

Resources

- Chapter 13 of IIR (feature selection)
- Chapter 14 of IIR
- Resources at http://cislmu.org
 - Perceptron example
 - General overview of text classification: Sebastiani (2002)
 - Text classification chapter on decision tress and perceptrons: Manning & Schütze (1999)
 - One of the best machine learning textbooks: Hastie, Tibshirani & Friedman (2003)