Introduction to Information Retrieval <http://informationretrieval.org>

IIR 14: Vector Space Classification

Hinrich Schütze

Center for Information and Language Processing, University of Munich

2013-05-28

Overview

[Intro vector space classification](#page-9-0)

[Rocchio](#page-28-0)

Outline

[Intro vector space classification](#page-9-0)

[Rocchio](#page-28-0)

> [two classes](#page--1-0)

Vector space classification: Basic idea of doing text classification for documents that are represented as vectors

- Vector space classification: Basic idea of doing text classification for documents that are represented as vectors
- Rocchio classifier: Rocchio relevance feedback idea applied to text classification

- Vector space classification: Basic idea of doing text classification for documents that are represented as vectors
- Rocchio classifier: Rocchio relevance feedback idea applied to text classification
- k nearest neighbor classification

- Vector space classification: Basic idea of doing text classification for documents that are represented as vectors
- Rocchio classifier: Rocchio relevance feedback idea applied to text classification
- k nearest neighbor classification
- **Q** Linear classifiers

- Vector space classification: Basic idea of doing text classification for documents that are represented as vectors
- Rocchio classifier: Rocchio relevance feedback idea applied to text classification
- k nearest neighbor classification
- **Q** Linear classifiers
- More than two classes

Outline

2 [Intro vector space classification](#page-9-0)

5 [Linear classifiers](#page-108-0)

 6 > [two classes](#page--1-0)

Each document is a vector, one component for each term.

- Each document is a vector, one component for each term.
- **•** Terms are axes.
- High dimensionality: 100,000s of dimensions

- Each document is a vector, one component for each term.
- **•** Terms are axes.
- High dimensionality: 100,000s of dimensions
- Normalize vectors (documents) to unit length

- Each document is a vector, one component for each term.
- **•** Terms are axes.
- **•** High dimensionality: 100,000s of dimensions
- Normalize vectors (documents) to unit length
- How can we do classification in this space?

Basic text classification setup

As before, the training set is a set of documents, each labeled with its class.

- As before, the training set is a set of documents, each labeled with its class.
- **In vector space classification, this set corresponds to a labeled** set of points or vectors in the vector space.

- As before, the training set is a set of documents, each labeled with its class.
- **In vector space classification, this set corresponds to a labeled** set of points or vectors in the vector space.
- **•** Premise 1: Documents in the same class form a contiguous region.

- As before, the training set is a set of documents, each labeled with its class.
- **In vector space classification, this set corresponds to a labeled** set of points or vectors in the vector space.
- Premise 1: Documents in the same class form a contiguous region.
- Premise 2: Documents from different classes don't overlap.

- As before, the training set is a set of documents, each labeled with its class.
- **In vector space classification, this set corresponds to a labeled** set of points or vectors in the vector space.
- Premise 1: Documents in the same class form a contiguous region.
- Premise 2: Documents from different classes don't overlap.
- We define lines, surfaces, hypersurfaces to divide regions.

Should the document \star be assigned to China, UK or Kenya?

Find separators between the classes

Find separators between the classes

Find separators between the classes

Based on these separators: \star should be assigned to China

How do we find separators that do a good job at classifying new documents like \star ? – Main topic of today

Outline

[Rocchio](#page-28-0)

[Linear classifiers](#page-108-0)

> [two classes](#page--1-0)

- In relevance feedback, the user marks documents as relevant/nonrelevant.
- Relevant/nonrelevant can be viewed as classes or categories.
- For each document, the user decides which of these two classes is correct.
- The IR system then uses these class assignments to build a better query ("model") of the information need . . .
- \bullet ... and returns better documents.
- Relevance feedback is a form of text classification.

Using Rocchio for vector space classification

The principal difference between relevance feedback and text classification:

Using Rocchio for vector space classification

- The principal difference between relevance feedback and text classification:
	- The training set is given as part of the input in text classification.

Using Rocchio for vector space classification

- The principal difference between relevance feedback and text classification:
	- The training set is given as part of the input in text classification.
	- It is interactively created in relevance feedback.

Rocchio classification: Basic idea

Rocchio classification: Basic idea

• Compute a centroid for each class

Rocchio classification: Basic idea

• Compute a centroid for each class

• The centroid is the average of all documents in the class.
Rocchio classification: Basic idea

- Compute a centroid for each class
	- The centroid is the average of all documents in the class.
- Assign each test document to the class of its closest centroid.

Recall definition of centroid

Recall definition of centroid

$$
\vec{\mu}(c) = \frac{1}{|D_c|} \sum_{d \in D_c} \vec{v}(d)
$$

where D_c is the set of all documents that belong to class c and $\vec{v}(d)$ is the vector space representation of d.

Rocchio illustrated: $a_1 = a_2, b_1 = b_2, c_1 = c_2$

Rocchio algorithm

Rocchio algorithm

 $TRAINROCCHIO(\mathbb{C}, \mathbb{D})$ 1 for each $c_i \in \mathbb{C}$ 2 do $D_i \leftarrow \{d : \langle d, c_i \rangle \in \mathbb{D}\}\$ $\vec{\mu}_j \leftarrow \frac{1}{|D_j|} \sum_{d \in D_j} \vec{v}(d)$ 4 return $\{\vec{\mu}_1, \ldots, \vec{\mu}_J\}$

$$
\text{APPLYROCCHIO}(\{\vec{\mu}_1,\ldots,\vec{\mu}_J\},d)
$$

1 return arg min_j $|\vec{\mu}_j - \vec{v}(d)|$

Rocchio forms a simple representation for each class: the centroid

- Rocchio forms a simple representation for each class: the centroid
	- We can interpret the centroid as the prototype of the class.

- Rocchio forms a simple representation for each class: the centroid
	- We can interpret the centroid as the prototype of the class.
- Classification is based on similarity to / distance from centroid/prototype.

- Rocchio forms a simple representation for each class: the centroid
	- We can interpret the centroid as the prototype of the class.
- Classification is based on similarity to / distance from centroid/prototype.
- Does not guarantee that classifications are consistent with the training data!

Time complexity of Rocchio

Time complexity of Rocchio

Rocchio vs. Naive Bayes

Rocchio vs. Naive Bayes

• In many cases, Rocchio performs worse than Naive Bayes.

Rocchio vs. Naive Bayes

- In many cases, Rocchio performs worse than Naive Bayes.
- One reason: Rocchio does not handle nonconvex, multimodal classes correctly.

- A is centroid of the a's, B is centroid of the b's.
- The point o is closer to A than to B.
- But o is a better fit for the b class.
- A is a multimodal class with two prototypes.
- **•** But in Rocchio we only have one prototype.

Outline

¹ [Recap](#page-2-0)

2 [Intro vector space classification](#page-9-0)

5 [Linear classifiers](#page-108-0)

 6 > [two classes](#page--1-0)

kNN classification

kNN classification is another vector space classification method.

- kNN classification is another vector space classification method.
- It also is very simple and easy to implement.
- kNN classification is another vector space classification method.
- It also is very simple and easy to implement.
- kNN is more accurate (in most cases) than Naive Bayes and Rocchio.
- kNN classification is another vector space classification method.
- It also is very simple and easy to implement.
- kNN is more accurate (in most cases) than Naive Bayes and Rocchio.
- If you need to get a pretty accurate classifier up and running in a short time . . .
- kNN classification is another vector space classification method.
- It also is very simple and easy to implement.
- kNN is more accurate (in most cases) than Naive Bayes and Rocchio.
- If you need to get a pretty accurate classifier up and running in a short time . . .
- . . . and you don't care about efficiency that much . . .
- kNN classification is another vector space classification method.
- It also is very simple and easy to implement.
- kNN is more accurate (in most cases) than Naive Bayes and Rocchio.
- If you need to get a pretty accurate classifier up and running in a short time . . .
- . . . and you don't care about efficiency that much . . .
- \bullet . . . use kNN.

kNN classification

• kNN = k nearest neighbors

- kNN = k nearest neighbors
- kNN classification rule for $k = 1$ (1NN): Assign each test document to the class of its nearest neighbor in the training set.

[Recap](#page-2-0) [Intro vector space classification](#page-9-0) [Rocchio](#page-28-0) [kNN](#page-70-0) [Linear classifiers](#page-108-0) > [two classes](#page--1-0) kNN classification

- kNN = k nearest neighbors
- kNN classification rule for $k = 1$ (1NN): Assign each test document to the class of its nearest neighbor in the training set.
- 1NN is not very robust one document can be mislabeled or atypical.

$Recap$ [Intro vector space classification](#page-9-0) [Rocchio](#page-28-0) kNN [Linear classifiers](#page-108-0) > [two classes](#page--1-0) kNN classification

- kNN = k nearest neighbors
- kNN classification rule for $k = 1$ (1NN): Assign each test document to the class of its nearest neighbor in the training set.
- 1NN is not very robust one document can be mislabeled or atypical.
- kNN classification rule for $k > 1$ (kNN): Assign each test document to the majority class of its k nearest neighbors in the training set.

$Recap$ [Intro vector space classification](#page-9-0) [Rocchio](#page-28-0) kNN [Linear classifiers](#page-108-0) > [two classes](#page--1-0) kNN classification

- kNN = k nearest neighbors
- kNN classification rule for $k = 1$ (1NN): Assign each test document to the class of its nearest neighbor in the training set.
- 1NN is not very robust one document can be mislabeled or atypical.
- kNN classification rule for $k > 1$ (kNN): Assign each test document to the majority class of its k nearest neighbors in the training set.
- Rationale of kNN: contiguity hypothesis

$Recap$ [Intro vector space classification](#page-9-0) [Rocchio](#page-28-0) kNN [Linear classifiers](#page-108-0) > [two classes](#page--1-0) kNN classification

- kNN = k nearest neighbors
- kNN classification rule for $k = 1$ (1NN): Assign each test document to the class of its nearest neighbor in the training set.
- 1NN is not very robust one document can be mislabeled or atypical.
- kNN classification rule for $k > 1$ (kNN): Assign each test document to the majority class of its k nearest neighbors in the training set.
- Rationale of kNN: contiguity hypothesis
	- \bullet We expect a test document d to have the same label as the training documents located in the local region surrounding d.

Probabilistic kNN

• Probabilistic version of kNN: $P(c|d)$ = fraction of k neighbors of d that are in c

- Probabilistic version of kNN: $P(c|d)$ = fraction of k neighbors of d that are in c
	- \circ kNN classification rule for probabilistic kNN: Assign d to class c with highest $P(c|d)$

kNN is based on Voronoi tessellation

kNN is based on Voronoi tessellation

kNN is based on Voronoi tessellation

kNN algorithm

 $TRAN-KNN(\mathbb{C}, \mathbb{D})$

- $1 \quad \mathbb{D}' \leftarrow$ PREPROCESS(\mathbb{D})
- 2 $k \leftarrow$ SELECT-K(\mathbb{C}, \mathbb{D}')
- 3 return \mathbb{D}', k

 $APPLY-KNN(\mathbb{D}', k, d)$

- 1 $S_k \leftarrow$ COMPUTENEARESTNEIGHBORS(\mathbb{D}', k, d)
- 2 for each $c_j \in \mathbb{C}(\mathbb{D}^{\prime})$
- 3 do $p_j \leftarrow |S_k \cap c_j|/k$
- 4 return arg max_i p_i

Exercise

How is star classified by: (i) 1-NN (ii) 3-NN (iii) 9-NN (iv) 15-NN (v) Rocchio?

Time complexity of kNN

Time complexity of kNN

kNN with preprocessing of training set

training $\Theta(|\mathbb{D}|L_{ave})$ testing $\Theta(L_a + |\mathbb{D}|M_{ave}M_a) = \Theta(|\mathbb{D}|M_{ave}M_a)$

kNN with preprocessing of training set

 $Recap$ [Intro vector space classification](#page-9-0) [Rocchio](#page-28-0) kNN [Linear classifiers](#page-108-0) > [two classes](#page--1-0)

training $\Theta(|\mathbb{D}|L_{\text{ave}})$ testing $\Theta(L_a + |\mathbb{D}|M_{ave}M_a) = \Theta(|\mathbb{D}|M_{ave}M_a)$

• kNN test time proportional to the size of the training set!

kNN with preprocessing of training set

 $Recap$ [Intro vector space classification](#page-9-0) [Rocchio](#page-28-0) kNN [Linear classifiers](#page-108-0) > [two classes](#page--1-0)

training $\Theta(|\mathbb{D}|L_{\text{ave}})$ testing $\Theta(L_{\rm a} + |\mathbb{D}|M_{\rm ave}M_{\rm a}) = \Theta(|\mathbb{D}|M_{\rm ave}M_{\rm a})$

- kNN test time proportional to the size of the training set!
- The larger the training set, the longer it takes to classify a test document.

kNN with preprocessing of training set

 $Recap$ [Intro vector space classification](#page-9-0) [Rocchio](#page-28-0) kNN [Linear classifiers](#page-108-0) > [two classes](#page--1-0)

training $\Theta(|\mathbb{D}|L_{\text{ave}})$ testing $\Theta(L_a + |\mathbb{D}|M_{ave}M_a) = \Theta(|\mathbb{D}|M_{ave}M_a)$

- kNN test time proportional to the size of the training set!
- The larger the training set, the longer it takes to classify a test document.
- kNN is inefficient for very large training sets.

Time complexity of kNN

kNN with preprocessing of training set

training $\Theta(\mathbb{D}|L_{ave})$ testing $\Theta(L_a + |\mathbb{D}|M_{ave}M_a) = \Theta(|\mathbb{D}|M_{ave}M_a)$

- kNN test time proportional to the size of the training set!
- The larger the training set, the longer it takes to classify a test document.
- kNN is inefficient for very large training sets.
- Question: Can we divide up the training set into regions, so that we only have to search in one region to do kNN classification for a given test document? (which perhaps would give us better than linear time complexity)

• No training necessary

- No training necessary
	- But linear preprocessing of documents is as expensive as training Naive Bayes.

- No training necessary
	- But linear preprocessing of documents is as expensive as training Naive Bayes.
	- We always preprocess the training set, so in reality training time of kNN is linear.

- No training necessary
	- But linear preprocessing of documents is as expensive as training Naive Bayes.
	- We always preprocess the training set, so in reality training time of kNN is linear.
- kNN is very accurate if training set is large.

- No training necessary
	- But linear preprocessing of documents is as expensive as training Naive Bayes.
	- We always preprocess the training set, so in reality training time of kNN is linear.
- kNN is very accurate if training set is large.
- Optimality result: asymptotically zero error if Bayes rate is zero.

- No training necessary
	- But linear preprocessing of documents is as expensive as training Naive Bayes.
	- We always preprocess the training set, so in reality training time of kNN is linear.
- kNN is very accurate if training set is large.
- Optimality result: asymptotically zero error if Bayes rate is zero.
- **•** But kNN can be very inaccurate if training set is small.
Outline

> [two classes](#page--1-0)

Linear classifiers

Linear classifiers

· Definition:

- **O** Definition:
	- A linear classifier computes a linear combination or weighted sum $\sum_i w_i x_i$ of the feature values.

- **O** Definition:
	- A linear classifier computes a linear combination or weighted sum $\sum_i w_i x_i$ of the feature values.
	- Classification decision: $\sum_i w_i x_i > \theta$?
- **O** Definition:
	- A linear classifier computes a linear combination or weighted sum $\sum_i w_i x_i$ of the feature values.
	- Classification decision: $\sum_i w_i x_i > \theta$?
	- \bullet ... where θ (the threshold) is a parameter.
- **O** Definition:
	- A linear classifier computes a linear combination or weighted sum $\sum_i w_i x_i$ of the feature values.
	- Classification decision: $\sum_i w_i x_i > \theta$?
	- \bullet ... where θ (the threshold) is a parameter.
- (First, we only consider binary classifiers.)
- **O** Definition:
	- A linear classifier computes a linear combination or weighted sum $\sum_i w_i x_i$ of the feature values.
	- Classification decision: $\sum_i w_i x_i > \theta$?
	- \bullet ... where θ (the threshold) is a parameter.
- (First, we only consider binary classifiers.)
- Geometrically, this corresponds to a line (2D), a plane (3D) or a hyperplane (higher dimensionalities), the separator.
- **O** Definition:
	- A linear classifier computes a linear combination or weighted sum $\sum_i w_i x_i$ of the feature values.
	- Classification decision: $\sum_i w_i x_i > \theta$?
	- \bullet ... where θ (the threshold) is a parameter.
- (First, we only consider binary classifiers.)
- Geometrically, this corresponds to a line (2D), a plane (3D) or a hyperplane (higher dimensionalities), the separator.
- We find this separator based on training set.
- **O** Definition:
	- A linear classifier computes a linear combination or weighted sum $\sum_i w_i x_i$ of the feature values.
	- Classification decision: $\sum_i w_i x_i > \theta$?
	- \bullet ... where θ (the threshold) is a parameter.
- (First, we only consider binary classifiers.)
- Geometrically, this corresponds to a line (2D), a plane (3D) or a hyperplane (higher dimensionalities), the separator.
- We find this separator based on training set.
- Methods for finding separator: Perceptron, Rocchio, Naive Bayes – as we will explain on the next slides
- - **O** Definition:
		- A linear classifier computes a linear combination or weighted sum $\sum_i w_i x_i$ of the feature values.
		- Classification decision: $\sum_i w_i x_i > \theta$?
		- \bullet ... where θ (the threshold) is a parameter.
	- (First, we only consider binary classifiers.)
	- Geometrically, this corresponds to a line (2D), a plane (3D) or a hyperplane (higher dimensionalities), the separator.
	- We find this separator based on training set.
	- Methods for finding separator: Perceptron, Rocchio, Naive Bayes – as we will explain on the next slides
	- Assumption: The classes are linearly separable.

A linear classifier in 1D is a point described by the equation $w_1d_1 = \theta$

- A linear classifier in 1D is a point described by the equation $w_1 d_1 = \theta$
- The point at θ/w_1

- A linear classifier in 1D is a point described by the equation $w_1 d_1 = \theta$
- The point at θ/w_1
- Points (d_1) with $w_1d_1 \geq \theta$ are in the class c.

- A linear classifier in 1D is a point described by the equation $w_1 d_1 = \theta$
- The point at θ/w_1
- Points (d_1) with $w_1d_1 \geq \theta$ are in the class c.
- Points (d_1) with $w_1d_1 < \theta$ are in the complement class \overline{c} .

A linear classifier in 2D is a line described by the equation $w_1d_1 + w_2d_2 = \theta$

- A linear classifier in 2D is a line described by the equation $w_1d_1 + w_2d_2 = \theta$
- Example for a 2D linear classifier

- A linear classifier in 2D is a line described by the equation $w_1d_1 + w_2d_2 = \theta$
- Example for a 2D linear classifier
- Points (d_1, d_2) with $w_1d_1 + w_2d_2 \geq \theta$ are in the class c.

- A linear classifier in 2D is a line described by the equation $w_1d_1 + w_2d_2 = \theta$
- Example for a 2D linear classifier
- Points (d_1, d_2) with $w_1d_1 + w_2d_2 \geq \theta$ are in the class c.
- Points (d_1, d_2) with $w_1d_1 + w_2d_2 < \theta$ are in the complement class \overline{c} .

A linear classifier in 3D is a plane described by the equation

 $w_1d_1 + w_2d_2 + w_3d_3 = \theta$

A linear classifier in 3D is a plane described by the equation

 $w_1d_1 + w_2d_2 + w_3d_3 = \theta$

Example for a 3D linear classifier

A linear classifier in 3D is a plane described by the equation

 $w_1d_1 + w_2d_2 + w_3d_3 = \theta$

- Example for a 3D linear classifier
- Points $(d_1 \ d_2 \ d_3)$ with $w_1d_1 + w_2d_2 + w_3d_3 \geq \theta$ are in the class c.

A linear classifier in 3D is a plane described by the equation

 $w_1d_1 + w_2d_2 + w_3d_3 = \theta$

- Example for a 3D linear classifier
- Points $(d_1 \ d_2 \ d_3)$ with $w_1d_1 + w_2d_2 + w_3d_3 \geq \theta$ are in the class c.
- Points (d_1, d_2, d_3) with $w_1d_1 + w_2d_2 + w_3d_3 < \theta$ are in the complement class \overline{c} .

Rocchio as a linear classifier

Rocchio as a linear classifier

• Rocchio is a linear classifier defined by:

$$
\sum_{i=1}^M w_i d_i = \vec{w} \vec{d} = \theta
$$

where \vec{w} is the normal vector $\vec{\mu}(c_1) - \vec{\mu}(c_2)$ and $\theta = 0.5 * (|\vec{\mu}(c_1)|^2 - |\vec{\mu}(c_2)|^2).$

Naive Bayes as a linear classifier

Naive Bayes as a linear classifier

Multinomial Naive Bayes is a linear classifier (in log space) defined by:

$$
\sum_{i=1}^M w_i d_i = \theta
$$

where $w_i = \log [\hat{P}(t_i|c)/\hat{P}(t_i|\bar{c})], \ d_i =$ number of occurrences of t_i in d, and $\theta = -\log[\hat{P}(c)/\hat{P}(\bar{c})]$. Here, the index i, $1 \le i \le M$, refers to terms of the vocabulary (not to positions in d as k did in our original definition of Naive Bayes)

Classification decision \bullet based on majority of k nearest neighbors.

- **Classification decision** based on majority of k nearest neighbors.
- The decision boundaries between classes are piecewise linear . . .

- **Classification decision** based on majority of k nearest neighbors.
- **O** The decision boundaries between classes are piecewise linear . . .
- . . . but they are in general not linear classifiers that can be described as $\sum_{i=1}^{M} w_i d_i = \theta.$

J.

Example of a linear two-class classifier

- **O** This is for the class *interest* in Reuters-21578.
- For simplicity: assume a simple $0/1$ vector representation
- \bullet d_1 : "rate discount dlrs world"
- \bullet d_2 : "prime dlrs"
- $\theta = 0$
- Exercise: Which class is d_1 assigned to? Which class is d_2 assigned to?

J.

Example of a linear two-class classifier

- **O** This is for the class *interest* in Reuters-21578.
- For simplicity: assume a simple $0/1$ vector representation
- \bullet d_1 : "rate discount dlrs world"
- \bullet d_2 : "prime dlrs"
- $\theta = 0$
- Exercise: Which class is d_1 assigned to? Which class is d_2 assigned to?
J.

Example of a linear two-class classifier

- **O** This is for the class *interest* in Reuters-21578.
- For simplicity: assume a simple $0/1$ vector representation
- \bullet d_1 : "rate discount dlrs world"
- \bullet d_2 : "prime dlrs"
- $\theta = 0$
- Exercise: Which class is d_1 assigned to? Which class is d_2 assigned to?

Example of a linear two-class classifier

- **O** This is for the class *interest* in Reuters-21578.
- For simplicity: assume a simple $0/1$ vector representation
- \bullet d_1 : "rate discount dlrs world"
- \bullet d_2 : "prime dlrs"
- $\theta = 0$
- Exercise: Which class is d_1 assigned to? Which class is d_2 assigned to?
- \bullet We assign document \vec{d}_1 "rate discount dlrs world" to *interest* since $\vec{w}^{\,T}\vec{d}_1 = 0.67\cdot 1 + 0.46\cdot 1 + (-0.71)\cdot 1 + (-0.35)\cdot 1 = 0.07 > 0 = \theta.$
- We assign \vec{d}_2 "prime dlrs" to the complement class (not in *interest*) since $\vec{w}^T \vec{d}_2 = -0.01 \leq \theta.$

• In terms of actual computation, there are two types of learning algorithms.

- In terms of actual computation, there are two types of learning algorithms.
- (i) Simple learning algorithms that estimate the parameters of the classifier directly from the training data, often in one linear pass.

- In terms of actual computation, there are two types of learning algorithms.
- (i) Simple learning algorithms that estimate the parameters of the classifier directly from the training data, often in one linear pass.
	- Naive Bayes, Rocchio, kNN are all examples of this.

- In terms of actual computation, there are two types of learning algorithms.
- (i) Simple learning algorithms that estimate the parameters of the classifier directly from the training data, often in one linear pass.
	- Naive Bayes, Rocchio, kNN are all examples of this.
- (ii) Iterative algorithms

- In terms of actual computation, there are two types of learning algorithms.
- (i) Simple learning algorithms that estimate the parameters of the classifier directly from the training data, often in one linear pass.
	- Naive Bayes, Rocchio, kNN are all examples of this.
- (ii) Iterative algorithms
	- Support vector machines

- In terms of actual computation, there are two types of learning algorithms.
- (i) Simple learning algorithms that estimate the parameters of the classifier directly from the training data, often in one linear pass.
	- Naive Bayes, Rocchio, kNN are all examples of this.
- (ii) Iterative algorithms
	- Support vector machines
	- Perceptron (example available as PDF on website: http://cislmu.org)

- In terms of actual computation, there are two types of learning algorithms.
- (i) Simple learning algorithms that estimate the parameters of the classifier directly from the training data, often in one linear pass.
	- Naive Bayes, Rocchio, kNN are all examples of this.
- (ii) Iterative algorithms
	- Support vector machines
	- Perceptron (example available as PDF on website: http://cislmu.org)
- The best performing learning algorithms usually require iterative learning.

• Randomly initialize linear separator \vec{w}

- Randomly initialize linear separator \vec{w}
- Do until convergence:

- Randomly initialize linear separator \vec{w}
- Do until convergence:
	- Pick data point \vec{x}

- Randomly initialize linear separator \vec{w}
- Do until convergence:
	- Pick data point \vec{x}
	- If sign $(\vec{w}^{\,T}\vec{x})$ is correct class (1 or -1): do nothing

- Randomly initialize linear separator \vec{w} \bullet
- Do until convergence:
	- Pick data point \vec{x}
	- If sign $(\vec{w}^{\,T}\vec{x})$ is correct class (1 or -1): do nothing
	- Otherwise: $\vec{w} = \vec{w} \text{sign}(\vec{w}^T\vec{x})\vec{x}$

• For linearly separable training sets: there are infinitely many separating hyperplanes.

- For linearly separable training sets: there are *infinitely* many separating hyperplanes.
- They all separate the training set perfectly ...
- For linearly separable training sets: there are *infinitely* many separating hyperplanes.
- They all separate the training set perfectly ...
- . . . but they behave differently on test data.
- For linearly separable training sets: there are *infinitely* many separating hyperplanes.
- They all separate the training set perfectly ...
- . . . but they behave differently on test data.
- Error rates on new data are low for some, high for others.
- For linearly separable training sets: there are *infinitely* many separating hyperplanes.
- They all separate the training set perfectly ...
- . . . but they behave differently on test data.
- Error rates on new data are low for some, high for others.
- How do we find a low-error separator?
- For linearly separable training sets: there are *infinitely* many separating hyperplanes.
- They all separate the training set perfectly ...
- . . . but they behave differently on test data.
- **•** Error rates on new data are low for some, high for others.
- How do we find a low-error separator?
- Perceptron: generally bad; Naive Bayes, Rocchio: ok; linear SVM: good

Many common text classifiers are linear classifiers: Naive Bayes, Rocchio, logistic regression, linear support vector machines etc.

- Many common text classifiers are linear classifiers: Naive Bayes, Rocchio, logistic regression, linear support vector machines etc.
- Each method has a different way of selecting the separating hyperplane

- Many common text classifiers are linear classifiers: Naive Bayes, Rocchio, logistic regression, linear support vector machines etc.
- Each method has a different way of selecting the separating hyperplane
	- Huge differences in performance on test documents

- Many common text classifiers are linear classifiers: Naive Bayes, Rocchio, logistic regression, linear support vector machines etc.
- Each method has a different way of selecting the separating hyperplane
	- Huge differences in performance on test documents
- Can we get better performance with more powerful nonlinear classifiers?

- Many common text classifiers are linear classifiers: Naive Bayes, Rocchio, logistic regression, linear support vector machines etc.
- Each method has a different way of selecting the separating hyperplane
	- Huge differences in performance on test documents
- Can we get better performance with more powerful nonlinear classifiers?
- Not in general: A given amount of training data may suffice for estimating a linear boundary, but not for estimating a more complex nonlinear boundary.

Resources

- Chapter 13 of IIR (feature selection)
- Chapter 14 of IIR
- Resources at <http://cislmu.org>
	- Perceptron example
	- General overview of text classification: Sebastiani (2002)
	- Text classification chapter on decision tress and perceptrons: Manning & Schütze (1999)
	- One of the best machine learning textbooks: Hastie, Tibshirani & Friedman (2003)