Systems of Linear Equations

Nooshin Maghsoodi

Noshirvani University

These slides are adapted from Linear Algebra course in UESTC

Outline

- Definition
- Solution Set
- Existence and Uniqueness Questions
- Matrix Notation
- Solving a Linear System

A linear equation in the variables x_1, \ldots, x_n is an equation that can be written in the form

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

where b and the **coefficients** a_1, \ldots, a_n are real or complex numbers.

A linear equation in the variables x_1, \ldots, x_n is an equation that can be written in the form

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

where b and the **coefficients** a_1, \ldots, a_n are real or complex numbers.

Examples

Linear Equations:

$$3x_1 - 5 = x_2$$
 and $\sqrt{2}x_1 = 3 + x_3$

A linear equation in the variables x_1, \ldots, x_n is an equation that can be written in the form

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = b$$

where b and the **coefficients** a_1, \ldots, a_n are real or complex numbers.

Examples

Linear Equations:

$$3x_1 - 5 = x_2$$
 and $\sqrt{2}x_1 = 3 + x_3$

Not Linear Equations:

$$2x_1 - x_1x_2 = 2$$
 and $\sqrt{x_1} = 3 + x_3$

Linear System

A system of linear equations (or a linear system) is a collection of one or more linear equations involving the same variables - say, x_1, \ldots, x_n .

Linear System

A system of linear equations (or a linear system) is a collection of one or more linear equations involving the same variables - say, x_1, \ldots, x_n .

An example

$$x_1 + x_2 - x_3 = 1.5$$

 $2x_1 + 2x_3 = -1$

Solution of Linear System

Solution of Linear System

A **solution** of the system is a list (s_1, s_2, \ldots, s_n) of numbers that makes each equation a true statement when the variables x_1, \ldots, x_n are substituted by s_1, \ldots, s_n .

Solution of Linear System

Solution of Linear System

A **solution** of the system is a list (s_1, s_2, \ldots, s_n) of numbers that makes each equation a true statement when the variables x_1, \ldots, x_n are substituted by s_1, \ldots, s_n .

(0.5, 0, -1) is a solution of the previous system.

Solution of Linear System

- The set of all possible solutions is called the solution set of the linear system.
- Two linear systems are called equivalent if they have the same solution set.

Example

Find the solution of the following linear system

$$\begin{aligned}
 x_1 - 2x_2 &= -1 \\
 -x_1 + 3x_2 &= 3
 \end{aligned}$$

Example

Find the solution of the following linear system

$$\begin{aligned}
 x_1 - 2x_2 &= -1 \\
 -x_1 + 3x_2 &= 3
 \end{aligned}$$

It amounts to finding the intersection to two lines.

Example

Find the solution of the following linear system

$$\begin{aligned}
 x_1 - 2x_2 &= -1 \\
 -x_1 + 3x_2 &= 3
 \end{aligned}$$

It amounts to finding the intersection to two lines.

Example

Find the solution of the following linear system

$$\begin{aligned}
 x_1 - 2x_2 &= -1 \\
 -x_1 + 3x_2 &= 3
 \end{aligned}$$

It amounts to finding the intersection to two lines.

A Unique Solution

$$\begin{array}{rcl} x_1 - 2x_2 & = -1 \\ -x_1 + 2x_2 & = 3 \end{array}$$

$$\begin{array}{rcl}
 x_1 - 2x_2 & = -1 \\
 -x_1 + 2x_2 & = 3
 \end{array}$$

$$\begin{array}{rcl}
 x_1 - 2x_2 &= -1 \\
 -x_1 + 2x_2 &= 3
 \end{array}$$

No Solution

$$\begin{aligned}
 x_1 - 2x_2 &= -1 \\
 -x_1 + 2x_2 &= 3
 \end{aligned}$$

$$\begin{array}{rcl}
 x_1 - 2x_2 & = -1 \\
 -x_1 + 2x_2 & = 1
 \end{array}$$

No Solution

$$\begin{aligned}
 x_1 - 2x_2 &= -1 \\
 -x_1 + 2x_2 &= 3
 \end{aligned}$$

$$\begin{array}{rcl}
 x_1 - 2x_2 & = -1 \\
 -x_1 + 2x_2 & = 1
 \end{array}$$

No Solution

$$\begin{aligned}
 x_1 - 2x_2 &= -1 \\
 -x_1 + 2x_2 &= 3
 \end{aligned}$$

No Solution

Infinitely Many Solutions

For a given linear system, it could

For a given linear system, it could

• Have a unique solution.

For a given linear system, it could

- Have a unique solution.
- Have infinitely many solutions.

For a given linear system, it could

- Have a unique solution.
- Have infinitely many solutions.
- Have no solution.

For a given linear system, it could

- Have a unique solution.
- Have infinitely many solutions.
- Have no solution.

For the first two situations, the corresponding linear system is **consistent**, *i.e.* it has at least one solution; otherwise the linear system is **inconsistent**.

Two fundamental questions about a linear system

Existence: Is the system consistent; that is, does at least one solution exist?

- **Existence**: Is the system consistent; that is, does at least one solution exist?
- Uniqueness: If a solution exists, is it the only one; that is, is the solution unique?

- **Existence**: Is the system consistent; that is, does at least one solution exist?
- Uniqueness: If a solution exists, is it the only one; that is, is the solution unique?
 - How to answer the two questions?

- **Existence**: Is the system consistent; that is, does at least one solution exist?
- Uniqueness: If a solution exists, is it the only one; that is, is the solution unique?
 - How to answer the two questions?
 - Solving a linear system.

- **Existence**: Is the system consistent; that is, does at least one solution exist?
- Uniqueness: If a solution exists, is it the only one; that is, is the solution unique?
 - How to answer the two questions?
 - Solving a linear system.
 - But before that

Definition

A matrix is an array of real or complex numbers.

Definition

A matrix is an array of real or complex numbers.

It is a convention to denote a matrix by an **upper** case letter, for example

$$A = \begin{bmatrix} -2 & 3 & 4 \\ 1 & 0 & 2 \end{bmatrix}$$

Definition

A matrix is an array of real or complex numbers.

It is a convention to denote a matrix by an **upper** case letter, for example

$$A = \begin{bmatrix} -2 & 3 & 4 \\ 1 & 0 & 2 \end{bmatrix}$$

 The size of a matrix refers to the number of rows and number of columns.

Definition

A matrix is an array of real or complex numbers.

It is a convention to denote a matrix by an **upper** case letter, for example

$$A = \begin{bmatrix} -2 & 3 & 4 \\ 1 & 0 & 2 \end{bmatrix}$$

- The size of a matrix refers to the number of rows and number of columns.
- The size of the above matrix is 2×3 , reads 2-by-3.

A linear system can be recorded compactly in a rectangular matrix.

A linear system can be recorded compactly in a rectangular matrix.

$$\begin{array}{rcl}
 x_1 & -2x_2 & +x_3 & = 0 \\
 & 2x_2 & -8x_3 & = 8 \\
 5x_1 & -5x_3 & = 10
 \end{array}$$

A linear system can be recorded compactly in a rectangular matrix.

$$\begin{array}{rcl}
 x_1 & -2x_2 & +x_3 & = 0 \\
 & 2x_2 & -8x_3 & = 8 \\
 5x_1 & -5x_3 & = 10
 \end{array}$$

$$\begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & -8 \\ 5 & 0 & -5 \end{bmatrix} \quad \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 5 & 0 & -5 & 10 \end{bmatrix}$$

A linear system can be recorded compactly in a rectangular matrix.

$$x_1 -2x_2 +x_3 = 0$$

 $2x_2 -8x_3 = 8$
 $5x_1 -5x_3 = 10$

$$\begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & -8 \\ 5 & 0 & -5 \end{bmatrix} \quad \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 5 & 0 & -5 & 10 \end{bmatrix}$$

- On the left, the coefficient matrix,
- On the right, the augmented matrix.

Practice Problems

 Write down the coefficient matrix and augmented matrix of the following linear system

$$\begin{aligned}
 x_1 + x_3 &= 10 \\
 2x_2 - 8x_3 &= 0 \\
 x_1 - 2x_2 &= 3
 \end{aligned}$$

Is (3, 4, -2) a solution of the following system?

$$5x_1 -x_2 +1x_3 = 7$$

$$-2x_2 +6x_2 +9x_3 = 0$$

$$-7x_1 5x_2 -3x_3 = -7$$

Strategy

Replace the system with an equivalent system (with the same solution set) that is easier to solve.

Strategy

Replace the system with an equivalent system (with the same solution set) that is easier to solve.

• What kind of linear system is easy to solve?

Strategy

Replace the system with an equivalent system (with the same solution set) that is easier to solve.

- What kind of linear system is easy to solve?
- Let us see an Example

$$\begin{array}{rrrr}
 x_1 & -2x_2 & +x_3 & = 0 \\
 & 2x_2 & -8x_3 & = 8 \\
 & 5x_1 & -5x_3 & = 10
 \end{array}$$

$$\begin{array}{rcccc}
x_1 & -2x_2 & +x_3 & = 0 \\
& 2x_2 & -8x_3 & = 8 \\
5x_1 & & -5x_3 & = 10
\end{array}$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 5 & 0 & -5 & 10 \end{bmatrix}$$

The third equation is replaced (replacement)

$$\begin{aligned}
 x_1 - 2x_2 + x_3 &= 0 \\
 2x_2 - 8x_3 &= 8 \\
 10x_2 - 10x_3 &= 10
 \end{aligned}
 \begin{bmatrix}
 1 & -2 & 1 & 0 \\
 0 & 2 & -8 & 8 \\
 0 & 10 & -10 & 10
 \end{bmatrix}$$

The third equation is replaced (replacement)

$$\begin{aligned}
 x_1 - 2x_2 + x_3 &= 0 \\
 2x_2 - 8x_3 &= 8 \\
 10x_2 - 10x_3 &= 10
 \end{aligned}
 \begin{bmatrix}
 1 & -2 & 1 & 0 \\
 0 & 2 & -8 & 8 \\
 0 & 10 & -10 & 10
 \end{bmatrix}$$

Then the second equation is scaled (scaling)

$$\begin{aligned}
 x_1 - 2x_2 + x_3 &= 0 \\
 x_2 - 4x_3 &= 4 \\
 10x_2 - 10x_3 &= 10
 \end{aligned}
 \begin{bmatrix}
 1 & -2 & 1 & 0 \\
 0 & 1 & -4 & 4 \\
 0 & 10 & -10 & 10
 \end{bmatrix}$$

Another replacement

$$-10 \cdot [\text{equation 2}] -10x_2 + 40x_3 = -40$$
+ [equation 3]
$$10x_2 - 10x_3 = 10$$
[new equation 3]
$$30x_3 = -30$$

Another replacement

$$-10 \cdot [\text{equation 2}] -10x_2 + 40x_3 = -40$$
+ [equation 3]
$$10x_2 - 10x_3 = 10$$
[new equation 3]
$$30x_3 = -30$$

$$x_1 - 2x_2 + x_3 = 0$$

$$x_2 - 4x_3 = 4$$

$$30x_3 = -30$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 30 & -30 \end{bmatrix}$$

Another replacement

$$-10 \cdot [\text{equation 2}] -10x_2 + 40x_3 = -40$$
+ [equation 3]
$$10x_2 - 10x_3 = 10$$

$$30x_3 = -30$$

$$x_1 - 2x_2 + x_3 = 0 x_2 - 4x_3 = 4 30x_3 = -30$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 30 & -30 \end{bmatrix}$$

Another scaling

$$x_1 - 2x_2 + x_3 = 0 x_2 - 4x_3 = 4 x_3 = -1$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$x_1 - 2x_2 + x_3 = 0 x_2 - 4x_3 = 4 x_3 = -1$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$x_1 - 2x_2 + x_3 = 0 x_2 - 4x_3 = 4 x_3 = -1$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

• From the third equation, we have $x_3 = -1$

$$x_1 - 2x_2 + x_3 = 0 x_2 - 4x_3 = 4 x_3 = -1$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

- From the third equation, we have $x_3 = -1$
- With $x_3 = -1$ substituted in the second equation, we can have $x_2 = 0$ by doing simple algebra

$$x_1 - 2x_2 + x_3 = 0 x_2 - 4x_3 = 4 x_3 = -1$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

- From the third equation, we have $x_3 = -1$
- With $x_3 = -1$ substituted in the second equation, we can have $x_2 = 0$ by doing simple algebra
- **3** With $x_2 = 0$ and $x_3 = -1$ substituted in the first equation, we have $x_1 = 1$

 Transform a linear system to an upper triangular linear system via:

 Transform a linear system to an upper triangular linear system via:

Elementary Row Operations

 Replacement: Replace one row by the sum of itself and a multiple of another row

 Transform a linear system to an upper triangular linear system via:

Elementary Row Operations

- Replacement: Replace one row by the sum of itself and a multiple of another row
- Scaling: Multiply all the entries in a row by a nonzero constant

 Transform a linear system to an upper triangular linear system via:

Elementary Row Operations

- Replacement: Replace one row by the sum of itself and a multiple of another row
- Scaling: Multiply all the entries in a row by a nonzero constant
- Row Interchange: Interchange two rows

Elementary Row Operations

• Row equivalent: if there is a sequence of elementary operation that transforms one matrix into the other.

Elementary Row Operations

• Row equivalent: if there is a sequence of elementary operation that transforms one matrix into the other.

0

Elementary Row Operations

 Row equivalent: if there is a sequence of elementary operation that transforms one matrix into the other.

0

Equivalent System

If the augmented matrices of two linear systems are row equivalent, then the two linear systems have the same solution set.

Determine if the system is consistent:

$$\begin{array}{rrrr} x_2 & -4x_3 & = 8 \\ 2x_1 & -3x_2 & +2x_3 & = 1 \\ 4x_1 & -8x_2 & +12x_3 & = 1 \end{array}$$

Determine if the system is consistent:

$$\begin{array}{ccc} x_2 & -4x_3 & = 8 \\ 2x_1 & -3x_2 & +2x_3 & = 1 \\ 4x_1 & -8x_2 & +12x_3 & = 1 \end{array}$$

Solution: The augmented matrix is

Determine if the system is consistent:

$$\begin{array}{ccc} x_2 & -4x_3 & = 8 \\ 2x_1 & -3x_2 & +2x_3 & = 1 \\ 4x_1 & -8x_2 & +12x_3 & = 1 \end{array}$$

Solution: The augmented matrix is

$$\begin{bmatrix} 0 & 1 & -4 & 8 \\ 2 & -3 & 2 & 1 \\ 4 & -8 & 12 & 1 \end{bmatrix}$$

Determine if the system is consistent:

$$\begin{array}{rrrr} x_2 & -4x_3 & = 8 \\ 2x_1 & -3x_2 & +2x_3 & = 1 \\ 4x_1 & -8x_2 & +12x_3 & = 1 \end{array}$$

Solution: The augmented matrix is

$$\begin{bmatrix} 0 & 1 & -4 & 8 \\ 2 & -3 & 2 & 1 \\ 4 & -8 & 12 & 1 \end{bmatrix}$$

Interchange rows 1 and 2:

Determine if the system is consistent:

$$\begin{array}{rrrr} x_2 & -4x_3 & = 8 \\ 2x_1 & -3x_2 & +2x_3 & = 1 \\ 4x_1 & -8x_2 & +12x_3 & = 1 \end{array}$$

Solution: The augmented matrix is

$$\begin{bmatrix} 0 & 1 & -4 & 8 \\ 2 & -3 & 2 & 1 \\ 4 & -8 & 12 & 1 \end{bmatrix}$$

Interchange rows 1 and 2:

Practice Problems

The augmented matrix of a linear system has been transformed by row operations into the form below. Determine if the system is consistent. If yes, find the solution.

$$\begin{bmatrix} 1 & 5 & 2 & -6 \\ 0 & 4 & -7 & 2 \\ 0 & 0 & 5 & 0 \end{bmatrix}$$