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Recall

Definition

The determinant of a 2× 2 matrix A = [aij] is the
number

detA = a11a22 − a12a21.

A 2× 2 matrix is invertible if and only if its
determinant is nonzero.
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Definition of Submatrix Aij

Definition
For any square matrix A, let Aij denote the
submatrix formed by deleting the ith row and jth
column of A

For instance, if

A =


1 −2 5 0
2 0 4 −1
3 1 0 7
0 4 −2 0
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Recursive Definition of Determinant

Definition

The determinant of an n × n matrix A = [aij is the 
sum of n terms of the form ±a1jdetA1j, with plus 
and minus signs alternating, where the entries
a11, a12, · · · , a1n are from the first row of A. In 
symbols,

detA = a11detA11 − a12detA12 + · · ·
+ (−1)1+na1ndetA1n

=
n∑

j=1

(−1)1+ja1jdetA1j
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Example

Compute the determinant of

A =

1 5 0
2 4 −1
0 −2 0





Cofactor

Given A = [aij], the (i, j)-cofactor of A is the
number Cij given by

Cij = (−1)i+jdetAij

Then

detA = a11C11 + a12C12 + · · ·+ a1nC1n,

which is a cofactor expansion across the first
row of A.
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Cofactor Expansion

The determinant of an n× n matrix A can be
computed by a cofactor expansion across any row
or down any column.

The expansion across the
ith row using the cofactors is

detA = ai1Ci1 + ai2Ci2 + · · ·+ ainCin

The cofactor expansion down the jth column is

detA = a1jC1j + a2jC2j + · · ·+ anjCnj
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Determinant of A Triangular Matrix

Example

Compute detA, where

A =


3 −5 0 9
0 −1 −1 10
0 0 2 −3
0 0 0 −3





Determinant of A Triangular Matrix

Theorem
If A is a triangular matrix, then detA is the product
of the entries on the main diagonal of A.



In-Class Exercises

Compute the following determinant by cofactor
expansion∣∣∣∣∣∣∣∣

4 0 0 5
1 7 2 −5
3 0 0 0
8 3 1 7

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

3 0 0 0
−8 2 0 0
−9 45 −1 0
3 5 6 2

∣∣∣∣∣∣∣∣
Let A =

[
1 2
3 4

]
. Write 4A. Is

det 4A = 4detA?



How may multiplication is required to calculate
an n× n determinate by cofactor expansion?
What does the result tell you?




