3.2 Properties of Determinants

Nooshin Maghsoodi

Noshirvani University

These slides are adapted from Linear Algebra course in UESTC

Outline

- Elementary Row Operations
- Determinant of Transpose
- Multiplicative and Linearity Properties

Elementary Row Operations

Exercise

Calculate the determinants of the following matrices

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Elementary Row Operations

Exercise

Calculate the determinants of the following matrices

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\begin{bmatrix} c & d \\ a & b \end{bmatrix} \quad \begin{bmatrix} a & b \\ c + ka & d + kb \end{bmatrix} \quad \begin{bmatrix} a & b \\ kc & kd \end{bmatrix}$$

Determinants of Elementary Matrices

Exercise

Calculate the determinants of the following matrices

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ k & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & k & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Let \boldsymbol{A} be a square matrix

Let A be a square matrix

• If a multiple of one row of A is added to another row to produce a matrix B, then $\det B = \det A$.

Let A be a square matrix

- If a multiple of one row of A is added to another row to produce a matrix B, then $\det B = \det A$.
- ② If two rows of A are interchanged to produce B, then $\det B = -\det A$.

Let A be a square matrix

- If a multiple of one row of A is added to another row to produce a matrix B, then $\det B = \det A$.
- ② If two rows of A are interchanged to produce B, then $\det B = -\det A$.
- If one row of A is multiplied by k to produce B, then $\det B = \frac{k}{k} \det A$.

If A is an $n \times n$ matrix and E is an $n \times n$ elementary matrix, then

$$\det EA = (\det E)(\det A)$$

If A is an $n\times n$ matrix and E is an $n\times n$ elementary matrix, then

$$\det EA = (\det E)(\det A)$$

where

$$\det E = \begin{cases} 1 & \text{if } E \text{ is a row replacement} \\ \end{cases}$$

If A is an $n\times n$ matrix and E is an $n\times n$ elementary matrix, then

$$\det EA = (\det E)(\det A)$$

where

$$\det E = \begin{cases} 1 & \text{if } E \text{ is a row replacement} \\ -1 & \text{if } E \text{ is an interchange} \end{cases}$$

If A is an $n\times n$ matrix and E is an $n\times n$ elementary matrix, then

$$\det EA = (\det E)(\det A)$$

where

$$\det E = \begin{cases} 1 & \text{if } E \text{ is a row replacement} \\ -1 & \text{if } E \text{ is an interchange} \\ k & \text{if } E \text{ is a scale by } k \end{cases}$$

Example

Compute
$$\det A$$
, where $A = \begin{bmatrix} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{bmatrix}$

Example

Compute
$$\det A$$
, where $A = \begin{bmatrix} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{bmatrix}$

Example

Compute det
$$A$$
, where $A = \begin{bmatrix} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{bmatrix}$

$$\det A = \left| \begin{array}{ccc} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{array} \right|$$

Example

Compute det
$$A$$
, where $A = \begin{bmatrix} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{bmatrix}$

$$\det A = \begin{vmatrix} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{vmatrix} = \begin{vmatrix} 1 & -4 & 2 \\ 0 & 0 & -5 \\ -1 & 7 & 0 \end{vmatrix}$$

Example

Compute det
$$A$$
, where $A = \begin{bmatrix} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{bmatrix}$

$$\det A = \begin{vmatrix} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{vmatrix} = \begin{vmatrix} 1 & -4 & 2 \\ 0 & 0 & -5 \\ -1 & 7 & 0 \end{vmatrix} = \begin{vmatrix} 1 & -4 & 2 \\ 0 & 0 & -5 \\ 0 & 3 & 2 \end{vmatrix}$$

Example

Compute det
$$A$$
, where $A = \begin{bmatrix} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{bmatrix}$

$$\det A = \begin{vmatrix} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{vmatrix} = \begin{vmatrix} 1 & -4 & 2 \\ 0 & 0 & -5 \\ -1 & 7 & 0 \end{vmatrix} = \begin{vmatrix} 1 & -4 & 2 \\ 0 & 0 & -5 \\ 0 & 3 & 2 \end{vmatrix}$$

$$= - \left| \begin{array}{ccc} 1 & -4 & 2 \\ 0 & 3 & 2 \\ 0 & 0 & -5 \end{array} \right|$$

Example

Compute det
$$A$$
, where $A = \begin{bmatrix} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{bmatrix}$

$$\det A = \begin{vmatrix} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{vmatrix} = \begin{vmatrix} 1 & -4 & 2 \\ 0 & 0 & -5 \\ -1 & 7 & 0 \end{vmatrix} = \begin{vmatrix} 1 & -4 & 2 \\ 0 & 0 & -5 \\ 0 & 3 & 2 \end{vmatrix}$$

$$= - \begin{vmatrix} 1 & -4 & 2 \\ 0 & 3 & 2 \\ 0 & 0 & -5 \end{vmatrix} = -(1)(3)(-5)$$

Example

Compute det
$$A$$
, where $A = \begin{bmatrix} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{bmatrix}$

$$\det A = \begin{vmatrix} 1 & -4 & 2 \\ -2 & 8 & -9 \\ -1 & 7 & 0 \end{vmatrix} = \begin{vmatrix} 1 & -4 & 2 \\ 0 & 0 & -5 \\ -1 & 7 & 0 \end{vmatrix} = \begin{vmatrix} 1 & -4 & 2 \\ 0 & 0 & -5 \\ 0 & 3 & 2 \end{vmatrix}$$

$$= - \begin{vmatrix} 1 & -4 & 2 \\ 0 & 3 & 2 \\ 0 & 0 & -5 \end{vmatrix} = -(1)(3)(-5) = 15$$

Compute
$$\det A$$
, where $A = \begin{bmatrix} 2 & -8 & 6 & 8 \\ 3 & -9 & 5 & 10 \\ -3 & 0 & 1 & -2 \\ 1 & -4 & 0 & 6 \end{bmatrix}$

Suppose a square matrix A has been reduced to an echelon form U by row replacements and row interchanges

Suppose a square matrix A has been reduced to an echelon form U by row replacements and row interchanges (without scaling).

$$\det A = (-1)^r \det U$$

$$U = \begin{bmatrix} \blacksquare & * & * & * \\ 0 & \blacksquare & * & * \\ 0 & 0 & \blacksquare & * \\ 0 & 0 & 0 & \blacksquare \end{bmatrix} \qquad U = \begin{bmatrix} \blacksquare & * & * & * \\ 0 & \blacksquare & * & * \\ 0 & 0 & 0 & \blacksquare \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\det U \neq 0$$

$$\det U \neq 0$$

Theorem

A square matrix A is invertible if and only if $\det A \neq 0$.

Compute
$$\det A$$
, where $A = \begin{bmatrix} 0 & 1 & 2 & -1 \\ 2 & 5 & -7 & 3 \\ 0 & 3 & 6 & 2 \\ -2 & -5 & 4 & -2 \end{bmatrix}$

Compute
$$\det A$$
, where $A = \begin{bmatrix} 0 & 1 & 2 & -1 \\ 2 & 5 & -7 & 3 \\ 0 & 3 & 6 & 2 \\ -2 & -5 & 4 & -2 \end{bmatrix}$

SOLUTION

Compute
$$\det A$$
, where $A = \begin{bmatrix} 0 & 1 & 2 & -1 \\ 2 & 5 & -7 & 3 \\ 0 & 3 & 6 & 2 \\ -2 & -5 & 4 & -2 \end{bmatrix}$

$$\det A = \left| \begin{array}{cccc} 0 & 1 & 2 & -1 \\ 2 & 5 & -7 & 3 \\ 0 & 3 & 6 & 2 \\ 0 & 0 & -3 & 1 \end{array} \right|$$

Compute
$$\det A$$
, where $A = \begin{bmatrix} 0 & 1 & 2 & -1 \\ 2 & 5 & -7 & 3 \\ 0 & 3 & 6 & 2 \\ -2 & -5 & 4 & -2 \end{bmatrix}$

$$\det A = \begin{vmatrix} 0 & 1 & 2 & -1 \\ 2 & 5 & -7 & 3 \\ 0 & 3 & 6 & 2 \\ 0 & 0 & -3 & 1 \end{vmatrix} = -2 \begin{vmatrix} 1 & 2 & -1 \\ 3 & 6 & 2 \\ 0 & -3 & 1 \end{vmatrix}$$

Compute
$$\det A$$
, where $A = \begin{bmatrix} 0 & 1 & 2 & -1 \\ 2 & 5 & -7 & 3 \\ 0 & 3 & 6 & 2 \\ -2 & -5 & 4 & -2 \end{bmatrix}$

$$\det A = \begin{vmatrix} 0 & 1 & 2 & -1 \\ 2 & 5 & -7 & 3 \\ 0 & 3 & 6 & 2 \\ 0 & 0 & -3 & 1 \end{vmatrix} = -2 \begin{vmatrix} 1 & 2 & -1 \\ 3 & 6 & 2 \\ 0 & -3 & 1 \end{vmatrix} = -2 \begin{vmatrix} 1 & 2 & -1 \\ 0 & 0 & 5 \\ 0 & -3 & 1 \end{vmatrix}$$

Compute
$$\det A$$
, where $A = \begin{bmatrix} 0 & 1 & 2 & -1 \\ 2 & 5 & -7 & 3 \\ 0 & 3 & 6 & 2 \\ -2 & -5 & 4 & -2 \end{bmatrix}$

$$\det A = \begin{vmatrix} 0 & 1 & 2 & -1 \\ 2 & 5 & -7 & 3 \\ 0 & 3 & 6 & 2 \\ 0 & 0 & -3 & 1 \end{vmatrix} = -2 \begin{vmatrix} 1 & 2 & -1 \\ 3 & 6 & 2 \\ 0 & -3 & 1 \end{vmatrix} = -2 \begin{vmatrix} 1 & 2 & -1 \\ 0 & 0 & 5 \\ 0 & -3 & 1 \end{vmatrix}$$

$$= (-2)(1) \left| \begin{array}{cc} 0 & 5 \\ -3 & 1 \end{array} \right|$$

Compute
$$\det A$$
, where $A = \begin{bmatrix} 0 & 1 & 2 & -1 \\ 2 & 5 & -7 & 3 \\ 0 & 3 & 6 & 2 \\ -2 & -5 & 4 & -2 \end{bmatrix}$

$$\det A = \begin{vmatrix} 0 & 1 & 2 & -1 \\ 2 & 5 & -7 & 3 \\ 0 & 3 & 6 & 2 \\ 0 & 0 & -3 & 1 \end{vmatrix} = -2 \begin{vmatrix} 1 & 2 & -1 \\ 3 & 6 & 2 \\ 0 & -3 & 1 \end{vmatrix} = -2 \begin{vmatrix} 1 & 2 & -1 \\ 0 & 0 & 5 \\ 0 & -3 & 1 \end{vmatrix}$$

$$= (-2)(1) \begin{vmatrix} 0 & 5 \\ -3 & 1 \end{vmatrix} = -2(15) = -30$$

Determinant of Transpose

Theorem

If A is an $n \times n$ matrix, then $\det A^T = \det A$.

Multiplicative Property

Theorem

If A and B are $n \times n$ matrices, then $\det AB = \det A \det B$.

Multiplicative Property

Theorem

If A and B are $n \times n$ matrices, then $\det AB = \det A \det B$.

Example

Verify this theorem for
$$A=\begin{bmatrix} 6 & 1 \\ 3 & 2 \end{bmatrix}$$
 and $B=\begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$

Multiplicative Property

Theorem

If A and B are $n \times n$ matrices, then $\det AB = \det A \det B$.

Example

Verify this theorem for
$$A = \begin{bmatrix} 6 & 1 \\ 3 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$

Warning

In general, $\det(A+B) \neq \det A + \det B$.

Suppose that the j-th column of A is allowed to vary, and write

$$A = [a_1 \cdots a_{j-1} \ x \ a_{j+1} \cdots a_n]$$

Suppose that the j-th column of A is allowed to vary, and write

$$A = [a_1 \cdots a_{j-1} \ x \ a_{j+1} \cdots a_n]$$

Suppose that the j-th column of A is allowed to vary, and write

$$A = [a_1 \cdots a_{j-1} \ x \ a_{j+1} \cdots a_n]$$

$$T(x) = \det[a_1 \cdots a_{j-1} \ x \ a_{j+1} \cdots a_n]$$

Suppose that the j-th column of A is allowed to vary, and write

$$A = [a_1 \cdots a_{j-1} \ x \ a_{j+1} \cdots a_n]$$

$$T(x) = \det[a_1 \cdots a_{j-1} \ x \ a_{j+1} \cdots a_n]$$

•
$$T(cX) = cT(x)$$

Suppose that the j-th column of A is allowed to vary, and write

$$A = [a_1 \cdots a_{j-1} \ x \ a_{j+1} \cdots a_n]$$

$$T(x) = \det[a_1 \cdots a_{j-1} \ x \ a_{j+1} \cdots a_n]$$

- T(cx) = cT(x)
- T(u+v) = T(u) + T(v)

Let
$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = 7$$
, find the determinants

$$\begin{array}{c|cccc}
a & b & c \\
d & e & f \\
3g & 3h & 3i
\end{array}$$

$$\begin{vmatrix} a+d & b+e & c+f \\ d & e & f \\ g & h & i \end{vmatrix}$$

- - as possible.
- **1** Let A be an $n \times n$ matrix such that $A^2 = I$. Show that $\det A = \pm 1$.
- **Show** that if A is invertible, then $\det A^{-1} = \frac{1}{\det A}$

Compute

$$\begin{vmatrix} a+b & a & a & \cdots & a \\ a & a+b & a & \cdots & a \\ a & a & a+b & \cdots & a \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a & a & a & \cdots & a+b \end{vmatrix}$$