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Definition
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Cramer's Rule

Let A be an invertible n X n matrix. For any b in
R", the unique solution x of Az = b has entries
given by

det Az(b) i
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Use Cramer's rule to solve the system
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SOLUTION
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A Formula for A~}

The j-th column of A~! is a vector x that satisfies
Az =¢;
By Cramer’s rule

det Az-(ej)
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classical adjoint) of A, denoted by adjA.

A Formula for A1
Let A be an invertible n X n matrix. Then

L1

p— .A
dot A9




Find the inverse of the matrix

2 1 3
A= 11 -1 1
1 4 =2



Determinants as Area or Volume

@ If Ais a2 x 2 matrix, the area of the

parallelogram determined by the columns of A
is detA.




Determinants as Area or Volume

@ If Ais a2 x 2 matrix, the area of the

parallelogram determined by the columns of A
is detA.

@ If Ais a 3 x 3 matrix, the volume of the
parallelepiped determined by the columns of A
is detA.






