4.3 Linearly Independent Sets and Bases

Nooshin Maghsoodi

Noshirvani University

These slides are adapted from Linear Algebra course in UESTC

Outline

- Linearly Independent
- Basis and the Spanning Set Theorem
- lacksquare Bases for $\mathsf{Nul} A$ and $\mathsf{Col} A$

Outline

- Linearly Independent
- Basis and the Spanning Set Theorem

Linearly Independent Sets

Linearly Independent

An indexed set $\{v_1, \dots, v_p\}$ in V is said to be **linearly** independent if the vector equation

$$x_1 \boldsymbol{v}_1 + x_2 \boldsymbol{v}_2 + \dots + x_p \boldsymbol{v}_p = \mathbf{0}$$

has only the trivial solution $x_1 = \cdots = x_p = 0$.

Linearly Independent Sets

• The set $\{v_1, \ldots, v_p\}$ is said to be **linearly dependent** if there exist weight c_1, \ldots, c_p , **not all zero**, such that

$$c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \dots + c_p \boldsymbol{v}_p = 0$$

• The set $\{v_1, \ldots, v_p\}$ is said to be **linearly dependent** if there exist weight c_1, \ldots, c_p , **not all zero**, such that

$$c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \dots + c_p \boldsymbol{v}_p = 0$$

• In the linearly dependent case, the equation defines a linear dependence relation among v_1, \ldots, v_p .

Let
$$m{v}_1=egin{bmatrix}1\\2\\3\end{bmatrix}, m{v}_2=egin{bmatrix}4\\5\\6\end{bmatrix}$$
 and $m{v}_3=egin{bmatrix}2\\1\\0\end{bmatrix}$

- Determine if the set $\{v_1, v_2, v_3\}$ is linearly independent.
- $oldsymbol{\circ}$ If possible, find a linear dependence relation among $oldsymbol{v}_1, oldsymbol{v}_2$ and \boldsymbol{v}_3 .

$$\begin{bmatrix} 1 & 4 & 2 & 0 \\ 2 & 5 & 1 & 0 \\ 3 & 6 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 4 & 2 & 0 \\ 0 & -3 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{matrix} x_1 & -2x_3 = 0 \\ x_2 + x_3 = 0 \\ 0 = 0 \end{matrix}$$

$$\begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} x_1 & -2x_3 = \\ x_2 + x_3 = \\ 0 = \end{array}$$

Linear Independence of Matrix Columns

Theorem

The columns of a matrix A are linearly independent if and only if the equation Ax = 0 has only the trivial solution.

Linear Independence of Matrix Columns

Theorem

The columns of a matrix A are linearly independent if and only if the equation Ax = 0 has only the trivial solution.

Example

Determine if the columns of the matrix

$$A = \begin{bmatrix} 0 & 1 & 4 \\ 1 & 2 & -1 \\ 5 & 8 & 0 \end{bmatrix}$$

are linearly independent.

$$\begin{bmatrix} 0 & 1 & 4 & 0 \\ 1 & 2 & -1 & 0 \\ 5 & 8 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & -2 & 5 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 4 & 0 \\ 0 & 0 & 13 & 0 \end{bmatrix}$$

- A set $\{v\}$ with only one vector?
 - v=0

- A set {v} with only one vector?
 - $oldsymbol{v}=oldsymbol{0}$ dependent

- A set {v} with only one vector?
 - v=0 dependent
 - $oldsymbol{v}
 eq oldsymbol{0}$

- A set {v} with only one vector?
 - v=0 dependent
 - $oldsymbol{v}
 eq oldsymbol{0}$ independent

- A set $\{v\}$ with only one vector?
 - v=0 dependent
 - v
 eq 0 independent

Example

Determine if the following sets of vectors are linearly independent.

a).
$$\boldsymbol{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
, $\boldsymbol{v}_2 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$ b). $\boldsymbol{v}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, $\boldsymbol{v}_2 = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$

• A set of two vectors $\{v_1, v_2\}$ is linearly dependent if at least one of the vectors is a multiple of the other.

- A set of two vectors $\{v_1, v_2\}$ is linearly dependent if at least one of the vectors is a multiple of the other.
- The set is linearly independent if and only if neither of the vectors is a multiple of the other.

• An indexed set $S = \{v_1, \dots, v_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.

- An indexed set $S = \{v_1, \dots, v_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others.
- In fact, S with $v_1 \neq 0$, is linearly dependent **if and only if** some v_j (with j > 0) is a linear combination of the proceeding vectors, v_1, \ldots, v_{j-1} .

Let
$$u = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$
 and $v = \begin{bmatrix} 1 \\ 6 \\ 0 \end{bmatrix}$. Describe the set spanned by u and v , and explain why a vector w is in Span $\{u, v\}$ if and only if $\{u, v, w\}$ is linearly dependent.

Let
$$u = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$
 and $v = \begin{bmatrix} 1 \\ 6 \\ 0 \end{bmatrix}$. Describe the set spanned by u and v , and explain why a vector w is in Span $\{u, v\}$ if and only if $\{u, v, w\}$ is linearly dependent.

Linearly dependent, w in Span{u, v}

Let
$$u = \begin{bmatrix} 3 \\ 1 \\ 0 \end{bmatrix}$$
 and $v = \begin{bmatrix} 1 \\ 6 \\ 0 \end{bmatrix}$. Describe the set spanned by u and v , and explain why a vector w is in Span $\{u, v\}$ if and only if $\{u, v, w\}$ is linearly dependent.

Let $p_1(t)=1, p_2(t)=t$, and $p_3(t)=2-t$. Then $\{p_1, p_2, p_3\}$ is linearly dependent in $\mathbb P$ because $p_3=2p_1-p_2$.

If a set contains more vectors than there are entries in each vector, then the set is linealy dependent.

If a set contains more vectors than there are entries in each vector, then the set is lineally dependent. That is, any set $\{v_1,\ldots,v_p\}$ in \mathbb{R}^n is linearly dependent if p>n.

```
P

n[*******

*******
```

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. That is, any set $\{v_1,\ldots,v_p\}$ in \mathbb{R}^n is linearly dependent if p>n.

Theorem

If a set $S = \{v_1, \dots, v_p\}$ contains the zero vector, then the set is linearly dependent.

If a set contains more vectors than there are entries in each vector, then the set is lineally dependent. That is, any set $\{v_1,\ldots,v_p\}$ in \mathbb{R}^n is linearly dependent if p>n.

Theorem

If a set $S = \{v_1, \dots, v_p\}$ contains the zero vector, then the set is linearly dependent.

Invertible Matrix Theorem

A is invertible if and only if the columns of A form a linearly independent set.

Outline

- Linearly Independent
- Basis and the Spanning Set Theorem

Basis

Let H be a subspace of a vector space V. An indexed set of vectors $\mathcal{B} = \{ \boldsymbol{b}_1, \dots, \boldsymbol{b}_p \}$ in V is a basis for H if

 $oldsymbol{0}$ \mathcal{B} is a **linearly independent** set

Basis

Let H be a subspace of a vector space V. An indexed set of vectors $\mathcal{B} = \{ \boldsymbol{b}_1, \dots, \boldsymbol{b}_p \}$ in V is a basis for H if

- **1** \mathcal{B} is a **linearly independent** set
- $oldsymbol{ ilde{Q}}$ The subspace spanned by ${\cal B}$ coincides with H, that is

$$H = \mathsf{Span}\{oldsymbol{b}_1, \dots, oldsymbol{b}_p\}$$

Basis

Let H be a subspace of a vector space V. An indexed set of vectors $\mathcal{B} = \{ \boldsymbol{b}_1, \dots, \boldsymbol{b}_p \}$ in V is a basis for H if

- $oldsymbol{\emptyset}$ is a **linearly independent** set
- $oldsymbol{ ilde{Q}}$ The subspace spanned by ${\cal B}$ coincides with H, that is

$$H = \mathsf{Span}\{oldsymbol{b}_1, \dots, oldsymbol{b}_p\}$$

• This applies to the case when H = V.

Let A be an invertible $n \times n$ matrix. Then the columns of A form a basis for \mathbb{R}^n .

Let A be an invertible $n \times n$ matrix. Then the columns of A form a basis for \mathbb{R}^n .

Let e_1, \ldots, e_n be the columns of the $n \times n$ identity matrix I_n . That is

$$oldsymbol{e}_1 = egin{bmatrix} 1 \ 0 \ dots \ 0 \end{bmatrix}, oldsymbol{e}_2 = egin{bmatrix} 0 \ 1 \ dots \ 0 \end{bmatrix}, \cdots, oldsymbol{e}_n = egin{bmatrix} 0 \ 0 \ dots \ 1 \end{bmatrix}$$

The set $\{e_1, \ldots, e_n\}$ is called the standard basis for \mathbb{R}^n .

Let
$$\boldsymbol{v}_1 = \begin{bmatrix} 3 \\ 0 \\ 6 \end{bmatrix}$$
, $\boldsymbol{v}_2 = \begin{bmatrix} -4 \\ 1 \\ 7 \end{bmatrix}$ and $\boldsymbol{v}_3 = \begin{bmatrix} -2 \\ 1 \\ 5 \end{bmatrix}$. Determine if $\{\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3\}$ is a basis for \mathbb{R}^3 .

The Spanning Set Theorem

Let $S = \{ \boldsymbol{v}_1, \dots, \boldsymbol{v}_p \}$ be a set in V, and let $H = \mathsf{Span} \{ \boldsymbol{v}_1, \dots, \boldsymbol{v}_p \}$.

- If one of the vectors in S -say, v_k is a linear combination of the remaining vectors in S, then the set formed from S by removing v_k still spans H.
- If $H \neq \{0\}$, some subset of S is a basis for H.

Outline

- Linearly Independent
- Basis and the Spanning Set Theorem
- lacksquare Bases for NulA and ColA

Bases for NulA and ColA

Example

Find a basis for the null space of the matrix

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

Example

Find a basis for the null space of the matrix

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

SOLUTION
$$A \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 & 0 \\ 0 & 0 & 1 & 2 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Bases for NulA and ColA

Example

Find a basis for the null space of the matrix

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

SOLUTION
$$A \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 & 0 \\ 0 & 0 & 1 & 2 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 Write the corresponding linear $x_1 \quad -2x_2 \quad -x_4 \quad +3x_5 = 0$ system $x_3 \quad +2x_4 \quad -2x_5 = 0$

Example

Find a basis for ColB, where

$$B = [m{b}_1 \cdots m{b}_5] = egin{bmatrix} 1 & 4 & 0 & 2 & 0 \ 0 & 0 & 1 & -1 & 0 \ 0 & 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Example

It can be shown that the matrix

$$A = [\boldsymbol{a}_1 \cdots \boldsymbol{a}_5] = \begin{bmatrix} 1 & 4 & 0 & 2 & 0 \\ 3 & 12 & 1 & 5 & 5 \\ 2 & 8 & 1 & 3 & 2 \\ 5 & 20 & 2 & 8 & 8 \end{bmatrix}$$

is row equivalent to the matrix B. Find a basis for ColA.

The **pivot columns of a matrix** A form a basis for ColA.

The **pivot columns of a matrix** A form a basis for ColA.

• The pivot columns of a matrix A are evident when A has been reduced to only echelon form.

The **pivot columns of a matrix** A form a basis for ColA.

- The pivot columns of a matrix A are evident when A has been reduced to only echelon form.
- But, be careful, one should use the pivot columns of A itself for the basis of ColA.

The **pivot columns of a matrix** A form a basis for ColA.

- The pivot columns of a matrix A are evident when A has been reduced to only echelon form.
- But, be careful, one should use the pivot columns of A itself for the basis of ColA.
- Row operations can change the column space of a matrix.

A basis is a spanning set that is as small as possible.

- A basis is a spanning set that is as small as possible.
- A basis is also a linearly independent set that is as large as possible.

- A basis is a spanning set that is as small as possible.
- A basis is also a linearly independent set that is as large as possible.

$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\3\\0 \end{bmatrix} \right\} \quad \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\3\\0 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix} \right\} \quad \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 2\\3\\0 \end{bmatrix}, \begin{bmatrix} 4\\5\\6 \end{bmatrix}, \begin{bmatrix} 7\\8\\9 \end{bmatrix} \right\}$$
Linearly independent but does not span \mathbb{R}^3

$$A basis \\ \text{for } \mathbb{R}^3$$
Spans \mathbb{R}^3 but is linearly dependent

1 Let
$$v_1 = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$$
 and $v_2 = \begin{bmatrix} -2 \\ 7 \\ 6 \end{bmatrix}$. Determine if $\{v_1, v_2\}$ is a basis for \mathbb{R}^3 . Is $\{v_1, v_2\}$ a basis for \mathbb{R}^2 ?

- Let $v_1 = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$ and $v_2 = \begin{bmatrix} -2 \\ 7 \\ 6 \end{bmatrix}$. Determine if $\{v_1, v_2\}$ is a basis for \mathbb{R}^3 . Is $\{v_1, v_2\}$ a basis for \mathbb{R}^2 ?
- $\text{ Let } \boldsymbol{v}_1 = \begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}, \boldsymbol{v}_2 = \begin{bmatrix} 6 \\ 2 \\ -1 \end{bmatrix}, \boldsymbol{v}_3 = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix} \text{ and } \boldsymbol{v}_4 = \begin{bmatrix} -4 \\ -8 \\ 9 \end{bmatrix}. \text{ Find a basis }$ for the subspace W spanned by $\{\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3, \boldsymbol{v}_4\}.$

Let
$$v_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ and $H = \left\{ \begin{bmatrix} s \\ s \\ 0 \end{bmatrix} : s \text{ in } \mathbb{R} \right\}$. Is $\{v_1, v_2\}$ a basis for H ?