The Invertible Matrix Theorem

Nooshin Maghsoodi

Noshirvani University

These slides are adapted from Linear Algebra course in UESTC

Row	p	а	e
000			

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Row	Space	
000	0	

2 Rank

3 The Invertible Matrix Theorem

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

Definition

If A is an $m \times n$ matrix. The set of all linear combinations of the row vectors is called the row space of A and is denoted by RowA.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Row Space

Definition

If A is an $m \times n$ matrix. The set of all linear combinations of the row vectors is called the row space of A and is denoted by RowA.

- Row A is a subspace of \mathbb{R}^n .
- One can write $\operatorname{Row} A$ as $\operatorname{Col} A^T$

Theorem

• If two matrices A and B are row equivalent, then their row spaces are the same.

Theorem

- If two matrices A and B are row equivalent, then their row spaces are the same.
- If B is in echelon form, the nonzero row of B form a basis for the row space of A as well as for that of B.

Example

Find the dimensions of the row space, null space and the column space of

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

Example

Find the dimensions of the row space, null space and the column space of

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 2 & 3 & -1 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Example

Find the dimensions of the row space, null space and the column space of

$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 2 & 3 & -1 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

dimRow A=2, dimNul A=3, and dimCol A=2.

pace	Rank	The Invertible Matrix 7
	000	

Row S

3 The Invertible Matrix Theorem

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

heorem

Rank

The Invertible Matrix Theorem 0000000

Rank and the Rank Theorem

Definition

The **rank** of A is the dimension of the column space of A.

Rank

The Invertible Matrix Theorem

Rank and the Rank Theorem

Definition

The **rank** of A is the dimension of the column space of A.

Theorem

• If A is an $m \times n$ matrix, then

 $\mathsf{rank}A + \mathsf{dim} \ \mathsf{Nul}A = n$

Row Space	Rank
	000

Rank

Example

• If A is a 6×7 matrix with a two-dimensional null space, what is the rank of A?

Row Space		

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Rank

Example

- If A is a 6×7 matrix with a two-dimensional null space, what is the rank of A?
- Could a 3×6 matrix have a two-dimensional null space?

Rank

Row	p	а	e
000			

The Invertible Matrix Theorem

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

The Invertible Matrix Theorem (Continued.)

- The columns of A form a basis of \mathbb{R}^n .
- $\operatorname{Col} A = \mathbb{R}^n$
- dimColA = n
- rankA = n
- $\operatorname{Nul} A = \{0\}$
- dimNulA = 0