Sec 5.1 Eigenvectors and Eigenvalues

Nooshin Maghsoodi

Noshirvani University

These slides are adapted from Linear Algebra course in UESTC

Outline

Some Problems

Eigenvector and Eigenvalue

Outline

Some Problems

Eigenvector and Eigenvalue

Google's Ranking Algorithm

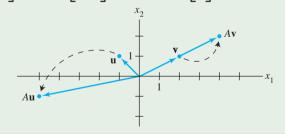
Outline

Some Problems

Eigenvector and Eigenvalue

Let
$$A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$$
, $u = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and $v = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Compute \underline{Au} and \underline{Av} .

Let
$$A = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$$
, $u = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and $v = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Compute \underline{Au} and \underline{Av} .



Eigenvector and Eigenvalue

Definition

• An eigenvector of an $n \times n$ matrix A is a nonzero vector x such that $Ax = \lambda x$ for some scalar λ .

Eigenvector and Eigenvalue

Definition

- An eigenvector of an $n \times n$ matrix A is a nonzero vector x such that $Ax = \lambda x$ for some scalar λ .
- A scalar λ is called an **eigenvalue** of A if there is a nontrivial solution x of $Ax = \lambda x$;

Eigenvector and Eigenvalue

Definition

- An eigenvector of an $n \times n$ matrix A is a nonzero vector x such that $Ax = \lambda x$ for some scalar λ .
- A scalar λ is called an **eigenvalue** of A if there is a nontrivial solution x of $Ax = \lambda x$;
- such an x is called an eigenvector corresponding to λ .

Let
$$A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$
, $u = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$ and $v = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$.

ullet Are u and v eigenvectors of A?

$$A\mathbf{u} = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 6 \\ -5 \end{bmatrix} = \begin{bmatrix} -24 \\ 20 \end{bmatrix} = -4 \begin{bmatrix} 6 \\ -5 \end{bmatrix} = -4\mathbf{u}$$
$$A\mathbf{v} = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \begin{bmatrix} -9 \\ 11 \end{bmatrix} \neq \lambda \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

Let
$$A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$
, $u = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$ and $v = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$.

- \bullet Are u and v eigenvectors of A?
- Show that 7 is an eigenvalue and find the corresponding eigenvectors.

$$A\mathbf{x} = 7\mathbf{x}$$

$$(A - 7I)\mathbf{x} = \mathbf{0}$$

$$A - 7I = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix} - \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix} = \begin{bmatrix} -6 & 6 \\ 5 & -5 \end{bmatrix}$$

$$\begin{bmatrix} -6 & 6 & 0 \\ 5 & -5 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

A scalar λ is an eigenvalue of an $n \times n$ matrix A if and only if the equation

$$(A - \lambda I)x = 0$$

has a nontrivial solution.

A scalar λ is an eigenvalue of an $n \times n$ matrix A if and only if the equation

$$(A - \lambda I)x = 0$$

has a nontrivial solution.

• The set of all solutions is just the null space of $A - \lambda I$.

A scalar λ is an eigenvalue of an $n \times n$ matrix A if and only if the equation

$$(A - \lambda I)x = 0$$

has a nontrivial solution.

- The set of all solutions is just the null space of $A \lambda I$.
- This set is a subspace of \mathbb{R}^n and is called the **eigensapce** of A corresponding to λ .

A scalar λ is an eigenvalue of an $n \times n$ matrix A if and only if the equation

$$(A - \lambda I)x = 0$$

has a nontrivial solution.

- The set of all solutions is just the null space of $A \lambda I$.
- This set is a subspace of \mathbb{R}^n and is called the **eigensapce** of A corresponding to λ .
- The eigenspace consists of **the zero** vector and all the eigenvectors corresponding to λ .

Let
$$A=\begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$$
 . An eigenvalue of A is 2. Find a basis for the corresponding eigenspace.

4□ > 4回 > 4 亘 > 4 亘 > □ 9 Q @

Let
$$A=\begin{bmatrix} 4 & -1 & 6\\ 2 & 1 & 6\\ 2 & -1 & 8 \end{bmatrix}$$
 . An eigenvalue of A is 2. Find a basis for the corresponding eigenspace.

Solution:

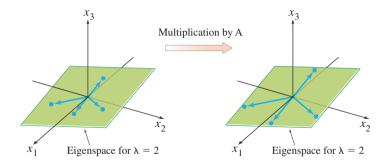
$$A - 2I = \begin{bmatrix} 2 & -1 & 6 \\ 2 & -1 & 6 \\ 2 & -1 & 6 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 & 6 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Let
$$A=\begin{bmatrix} 4 & -1 & 6\\ 2 & 1 & 6\\ 2 & -1 & 8 \end{bmatrix}$$
 . An eigenvalue of A is 2. Find a basis for the corresponding eigenspace.

Solution:

$$A - 2I = \begin{bmatrix} 2 & -1 & 6 \\ 2 & -1 & 6 \\ 2 & -1 & 6 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 & 6 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

A basis is
$$\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} -3\\0\\1 \end{bmatrix} \right\}$$
.



If $n \times n$ matrix A satisfies $A^2 = A$. Show that A only has eigenvalues 0 or 1

$$\lambda v = Av = AAv = \lambda Av = \lambda^2 v$$

Invertible Matrix Theorem (continued)

Matrix A is invertible if and only if

ullet 0 is not an eigenvalue of A

Theorem

If v_1, \ldots, v_r are eigenvectors that correspond to **distinct** eigenvalues $\lambda_1, \ldots, \lambda_r$ of an $n \times n$ matrix A, then the set $\{v_1, \ldots, v_r\}$ is linearly independent.

Questions

• How to find the eigenvalues of a matrix?

Questions

- How to find the eigenvalues of a matrix?
- Are there enough linearly independent eigenvectors to span \mathbb{R}^n , or to form a basis of \mathbb{R}^n ?