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How to find the eigenvalues of a matrix?

The secret lies in that the equation (A− λI)x = 0 has
nontrivial solution.

Or A− λI is not invertible (singular)

Recall the Invertible Matrix Theorem: A matrix is invertible if
and only if its determinant is nonzero.
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Characteristic Equation

A scalar λ is an eigenvalue of an n× n matrix A if and only if λ
satisfies the characteristic equation

det(A− λI) = 0
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Example

Find the characteristic equation of

A =


5 −2 6 −1
0 2 −8 0
0 0 5 1
0 0 0 1


The eigenvalues of a triangular matrix are the entries on its
main diagonal.
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Characteristic polynomial

Characteristic polynomial of A: det(A− λI), a polynomial
of degree n.

(Algebraic) multiplicity of an eigenvalue λ: its multiplicity
as a root of the characteristic equation
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Example

The characteristic polynomial of a 6× 6 matrix is λ6 − 4λ5 − 12λ4.
Find the eigenvalues and their multiplicities.
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Exercises

If x is an eigenvector of A corresponding to λ, what is A3x?

If A is an n× n matrix and λ is an eigenvalue of A, show that
2λ is an eigenvalue of 2A.

Find the characteristic equation and eigenvalues of

A =

[
1 −4
4 2

]
If A2 = I, show that the eigenvalues of A can only be 1 or -1
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Eigenvalues

Since the characteristic equation of an n× n matrix involves a
polynomial of degree n, the equation always has exactly n
roots, counting mutiplicities, provided that possibly
complex roots are included.

The complex eigvalues of a real matrix will appear in conjugate
pair.

If a real matrix A has complex eigenvalue λ, then the
corresponding eigenvectors are also complex.
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Eigenvalues, Trace and Determinant

det(λI − A) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0

= λn − (a11 + a22 + · · ·+ ann)λ
n−1 + · · ·+ (−1)n detA

= (λ− λ1)(λ− λ2) · · · (λ− λn)
= λn − (λ1 + · · ·+ λn)λ

n−1 + · · ·+ (−1)nλ1 · · ·λn

Trace: λ1 + · · ·+ λn = a11 + a22 + · · ·+ ann = tr(A)

Determinant: λ1 · · ·λn = detA
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Similarity

If A and B are n× n matrices, then A is similar to B if there
is an invertible matrix P such that P−1AP = B, or,
equivalently A = PBP−1.

Writing Q for P−1, we have Q−1BQ = A. So B is also similar
to A, and we say simply that A and B are similar.

Changing A into P−1AP is called a similarity
transformation.
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Theorem
If n× n matrices A and B are similar, then they have the same
characteristic polynomial and hence the same eigenvalues (with the
same multiplicities).

Are the matrices

[
2 1
0 2

]
and

[
2 0
0 2

]
similar?

Row operations on a matrix usually change its eigenvalues.
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