◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ● ● ● ●

5.3 Diagonalization

Nooshin Maghsoodi

Noshirvani University

These slides are adapted from Linear Algebra course in UESTC

Outline

Outline

Compute A^k

Example

If
$$D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$$
, then $D^2 = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 5^2 & 0 \\ 0 & 3^2 \end{bmatrix}$,

Compute A^k

Example

If
$$D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$$
, then $D^2 = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 5^2 & 0 \\ 0 & 3^2 \end{bmatrix}$,
 $D^3 = \begin{bmatrix} 5^3 & 0 \\ 0 & 3^3 \end{bmatrix}$,

Compute A^k

Example

If
$$D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$$
, then $D^2 = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 5^2 & 0 \\ 0 & 3^2 \end{bmatrix}$,
 $D^3 = \begin{bmatrix} 5^3 & 0 \\ 0 & 3^3 \end{bmatrix}$, and in general
 $D^k = \begin{bmatrix} 5^k & 0 \\ 0 & 3^k \end{bmatrix}$

Diagonalization

Diagonalizable Matrices

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = の < @

How to compute A^k ?

Diagonalization

Diagonalizable Matrices

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ● ● ● ●

How to compute A^k ?

If $A = PDP^{-1}$ for some invertible P and D, then A^k is easy to compute.

Let
$$A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$$
. Find a formula for A^k , given that $A = PDP^{-1}$, where

$$P = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \text{ and } D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$$

Let
$$A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$$
. Find a formula for A^k , given that $A = PDP^{-1}$, where

$$P = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \text{ and } D = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$$
Solution $P^{-1} = \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$

<ロ> <回> <回> <三> <三> <三> <三> <三> <三> <三</p>

$$A^{2} = (PDP^{-1})(PDP^{-1}) = PD(P^{-1}P)DP^{-1} = PDDP^{-1}$$
$$= PD^{2}P^{-1} = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 5^{2} & 0 \\ 0 & 3^{2} \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$$

Again,

$$A^{3} = (PDP^{-1})A^{2} = (PDP^{-1})PD^{2}P^{-1} = PDD^{2}P^{-1} = PD^{3}P^{-1}$$

In general, for $k \ge 1$,

$$A^{k} = PD^{k}P^{-1} = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 5^{k} & 0 \\ 0 & 3^{k} \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} 2 \cdot 5^{k} - 3^{k} & 5^{k} - 3^{k} \\ 2 \cdot 3^{k} - 2 \cdot 5^{k} & 2 \cdot 3^{k} - 5^{k} \end{bmatrix}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Definition

A matrix A is said to be **diagonalizable** if A is similar to a diagonal matrix, that is, if $A = PDP^{-1}$ for some invertible matrix P and some diagonal matrix D.

Definition

A matrix A is said to be **diagonalizable** if A is similar to a diagonal matrix, that is, if $A = PDP^{-1}$ for some invertible matrix P and some diagonal matrix D.

Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

Definition

A matrix A is said to be **diagonalizable** if A is similar to a diagonal matrix, that is, if $A = PDP^{-1}$ for some invertible matrix P and some diagonal matrix D.

Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

The columns of P is called an **eigenvector basis** of \mathbb{R}^n

Diagonalize the following matrix, if possible.

$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

Diagonalize the following matrix, if possible.

$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

Solution

• Find the eigenvalues of A.

$$0 = \det (A - \lambda I) = -\lambda^3 - 3\lambda^2 + 4$$
$$= -(\lambda - 1)(\lambda + 2)^2$$

Diagonalize the following matrix, if possible.

$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

Solution

• Find the eigenvalues of A.

$$0 = \det \left(A - \lambda I \right) = -\lambda^3 - 3\lambda^2 + 4$$

$$= -(\lambda - 1)(\lambda + 2)^2$$

• Find three linearly independent eigenvectors of A.

Basis for
$$\lambda = 1$$
: $\mathbf{v}_1 = \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}$
Basis for $\lambda = -2$: $\mathbf{v}_2 = \begin{bmatrix} -1\\ 1\\ 0\\ 1 \end{bmatrix}$ and $\mathbf{v}_3 = \begin{bmatrix} -1\\ 0\\ 1\\ 1 \end{bmatrix}$

Diagonalize the following matrix, if possible.

$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

Solution

- Find the eigenvalues of A.
- Find three linearly independent eigenvectors of A.
- Construct *P*, whose columns are eigenvectors.

Diagonalize the following matrix, if possible.

$$A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

Solution

- Find the eigenvalues of A.
- Find three linearly independent eigenvectors of A.
- Construct *P*, whose columns are eigenvectors.
- Construct *D*, whose diagonal entries are eigenvalues.

Diagonalize the following matrix, if possible.

$$A = \begin{bmatrix} 4 & 6 & 0 \\ -3 & -5 & 0 \\ -3 & -6 & 1 \end{bmatrix}$$

Diagonalize the following matrix, if possible,

$$A = \begin{bmatrix} 2 & 4 & 3 \\ -4 & -6 & -3 \\ 3 & 3 & 1 \end{bmatrix}$$

.

The characteristic equation of A:

$$0 = |A - \lambda I| = -(\lambda - 1)(\lambda + 2)^{2}.$$

Basis for
$$\lambda = 1$$
: $\mathbf{v}_1 = \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}$
Basis for $\lambda = -2$: $\mathbf{v}_2 = \begin{bmatrix} -1\\ 1\\ 0 \end{bmatrix}$

- - -

・ロト ・日・・日・・日・・ のくの

Outline

Theorem

An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

Theorem

An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

Example

Determine if the following matrix is diagonalizable.

$$A = \begin{bmatrix} 2 & 4 & 3 \\ 0 & 0 & -3 \\ 0 & 0 & 1 \end{bmatrix}$$

Theorem

Let A be an $n \times n$ matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_p$.

Theorem

Let A be an $n \times n$ matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_p$.

• For $1 \le k \le p$, the dimension of the eigenspace for λ_k is less than or equal to the multiplicity of the eigenvalue λ_k .

Theorem

Let A be an $n \times n$ matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_p$.

- For $1 \le k \le p$, the dimension of the eigenspace for λ_k is less than or equal to the multiplicity of the eigenvalue λ_k .
- The matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces equals n,

Theorem

Let A be an $n \times n$ matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_p$.

- For $1 \le k \le p$, the dimension of the eigenspace for λ_k is less than or equal to the multiplicity of the eigenvalue λ_k .
- The matrix A is diagonalizable if and only if the sum of the dimensions of the eigenspaces equals n, and this happens if and only if the dimension of the eigenspace for each λ_k equals the multiplicity of λ_k.

Theorem (continued)

If A is diagonalizable and B_k is a basis for the eigenspace corresponding to λ_k for each k, then the total collection of vectors in the sets B₁,..., B_p forms an eigenvector basis for Rⁿ.

Exercises

• Compute
$$A^{100}$$
, where $A = \begin{bmatrix} 1 & 4 & 2 \\ 0 & -3 & 4 \\ 0 & 4 & 3 \end{bmatrix}$

• Diagonalize the following matrix, if possible.

$$A = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3 \end{bmatrix}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@