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How to compute A*?
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How to compute A*?

If A= PDP~! for some invertible P and D, then A* is easy to
compute.
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Solution P~ = [_1 _1]
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A?> = (PDP Y (PDP™"Y = PD(P'P)DP~! = PDDP™!
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Again,

In general, for k > 1,
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Definition
A matrix A is said to be diagonalizable if A is similar to a
diagonal matrix, that is, if A = PDP~! for some invertible matrix

P and some diagonal matrix D.
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Definition
A matrix A is said to be diagonalizable if A is similar to a
diagonal matrix, that is, if A = PDP~! for some invertible matrix

P and some diagonal matrix D.

An n x n matrix A is diagonalizable if and only if A has n linearly
independent eigenvectors.
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Definition
A matrix A is said to be diagonalizable if A is similar to a
diagonal matrix, that is, if A = PDP~! for some invertible matrix

P and some diagonal matrix D.

An n x n matrix A is diagonalizable if and only if A has n linearly
independent eigenvectors.

The columns of P is called an eigenvector basis of R"



Diagonalize the following matrix, if possible.

1 3 3
A= |-3 -5 -3
3 3 1
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Diagonalize the following matrix, if possible.

1 3 3
A= |-3 -5 -3
3 3 1

Solution
@ Find the eigenvalues of A. 0= det(A—11) = —23— 312 +4

=-@A-DR+27
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Example

Diagonalize the following matrix, if possible.

1 3 3
A= |-3 -5 —3
3 3 1

Solution
. . O=det{A—A[)=—-23—3)214
@ Find the eigenvalues of A. RS

@ Find three linearly independent eigenvectors of A.

1

BasisforA=1: v, =] -1

1
—1 —1
BasisforA =-2: v, = 1 and vy = 0
0 1
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Diagonalize the following matrix, if possible.

1 3 3
A=|-3 -5 -3
3 3 1

Solution
@ Find the eigenvalues of A.
@ Find three linearly independent eigenvectors of A.
@ Construct P, whose columns are eigenvectors.
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Example

Diagonalize the following matrix, if possible.

1 3 3
A=|-3 -5 -3
3 3 1

Solution
@ Find the eigenvalues of A.
@ Find three linearly independent eigenvectors of A.
@ Construct P, whose columns are eigenvectors.
@ Construct D, whose diagonal entries are eigenvalues.



Diagonalize the following matrix, if possible.

4 6 0
A=1|-3 =5 0
-3 —6 1




Example
Diagonalize the following matrix, if possible,

2 4 3
A= |-4 —6 -3
3 3 1

The characteristic equation of A:

0=[A—M|=—(A—1)(A+2)2 o=t -

Basisfor A = —2: Vo=
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An n x n matrix with n distinct eigenvalues is diagonalizable.




An n x n matrix with n distinct eigenvalues is diagonalizable.

Determine if the following matrix is diagonalizable.

24 3
A=10 0 -3
00 1




Diagonalizable Matrix

Let A be an n X n matrix with distinct eigenvalues A;, ..., A,.
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Q@ For 1 <k < p, the dimension of the eigenspace for )\ is
less than or equal to the multiplicity of the eigenvalue
Ak
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Let A be an n X n matrix with distinct eigenvalues A;, ..., A,.

Q@ For 1 <k < p, the dimension of the eigenspace for )\ is
less than or equal to the multiplicity of the eigenvalue
Ak

@ The matrix A is diagonalizable if and only if the sum of the
dimensions of the eigenspaces equals n,




Diagonalizable Matrix

Let A be an n X n matrix with distinct eigenvalues A;, ..., A,.

Q@ For 1 <k < p, the dimension of the eigenspace for )\ is
less than or equal to the multiplicity of the eigenvalue
Ak

@ The matrix A is diagonalizable if and only if the sum of the
dimensions of the eigenspaces equals n, and this happens if
and only if the dimension of the eigenspace for each \; equals
the multiplicity of Ay.




Diagonalizable Matrix

Theorem (continued)

@ If A is diagonalizable and By, is a basis for the eigenspace
corresponding to A\, for each k, then the total collection of
vectors in the sets 5, ..., B, forms an eigenvector basis for
R"™.




Exercises

1 4 2
e Compute A where A= [0 —3 4
0 4 3

@ Diagonalize the following matrix, if possible.

5 0 0 O
0O 5 0 O
A= 1 4 -3 0

-1 -2 0 =3
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