Nooshin Maghsoodi

Noshirvani University

These slides are adapted from Linear Algebra course in UESTC

Outline

Inner Product

- Length of a Vector
- Orthogonal

Outline

Inner Product

- Length of a Vector
- Orthogonal

Purpose

• We want to extend the geometric concepts of length, distance and perpendicularity, defined on \mathbb{R}^2 and \mathbb{R}^3 , to \mathbb{R}^n .

• If $u, v \in \mathbb{R}^n$, we regard them as $n \times 1$ matrices, then $u^T v$ is a scalar.

• If $u, v \in \mathbb{R}^n$, we regard them as $n \times 1$ matrices, then $u^T v$ is a scalar.

Definition

The number $u^T v$ is called the **inner product** of u and v,

• If $u, v \in \mathbb{R}^n$, we regard them as $n \times 1$ matrices, then $u^T v$ is a scalar.

Definition

The number $u^T v$ is called the **inner product** of u and v, and often it is written as $u \cdot v$.

• If $u, v \in \mathbb{R}^n$, we regard them as $n \times 1$ matrices, then $u^T v$ is a scalar.

Definition

The number u^Tv is called the **inner product** of u and v, and often it is written as $u \cdot v$. It is also referred to as a **dot product**.

lf

$$oldsymbol{u} = egin{bmatrix} u_1 \ u_2 \ dots \ u_n \end{bmatrix}, \quad oldsymbol{v} = egin{bmatrix} v_1 \ v_2 \ dots \ v_n \end{bmatrix}$$

then the inner product of $oldsymbol{u}$ and $oldsymbol{v}$ is

lf

$$oldsymbol{u} = egin{bmatrix} u_1 \ u_2 \ dots \ u_n \end{bmatrix}, \quad oldsymbol{v} = egin{bmatrix} v_1 \ v_2 \ dots \ v_n \end{bmatrix}$$

then the inner product of $oldsymbol{u}$ and $oldsymbol{v}$ is

$$oldsymbol{u}\cdotoldsymbol{v}=oldsymbol{u}^Toldsymbol{v}$$

lf

$$oldsymbol{u} = egin{bmatrix} u_1 \ u_2 \ dots \ u_n \end{bmatrix}, \quad oldsymbol{v} = egin{bmatrix} v_1 \ v_2 \ dots \ v_n \end{bmatrix}$$

then the inner product of u and v is

$$m{u}\cdotm{v}=m{u}^Tm{v}=egin{bmatrix}u_1 & u_2 & \cdots & u_n\end{bmatrix}egin{bmatrix}v_1 \ v_2 \ dots \ v_n\end{bmatrix}=\sum_{i=1}^n u_iv_i$$

Compute
$$u \cdot v$$
 and $v \cdot u$ for $u = \begin{bmatrix} 2 \\ -5 \\ -1 \end{bmatrix}$ and $v = \begin{bmatrix} 3 \\ 2 \\ -3 \end{bmatrix}$

Let u, v and w be vectors in \mathbb{R}^n , and let c be a scalar. Then

 $\mathbf{0} \quad \mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$

- $\mathbf{0} \quad \mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$

- $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- $0 (u+v) \cdot w = u \cdot w + v \cdot w$

- $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$

- $oldsymbol{0} \quad oldsymbol{u} \cdot oldsymbol{u} \geq 0$, and $oldsymbol{u} \cdot oldsymbol{u} = 0$ if and only if $oldsymbol{u} = oldsymbol{0}$

- $\mathbf{0} \quad \mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$

- $oldsymbol{0} \quad oldsymbol{u} \cdot oldsymbol{u} \geq 0$, and $oldsymbol{u} \cdot oldsymbol{u} = 0$ if and only if $oldsymbol{u} = oldsymbol{0}$
 - Generalization?

Outline

- Inner Product
- 2 Length of a Vector
- Orthogonal

Definition

The length (or norm) of v is the nonnegative scalar $\|v\|$ defined by

$$\|oldsymbol{v}\| = \sqrt{oldsymbol{v}\cdotoldsymbol{v}}$$

Definition

The length (or norm) of v is the nonnegative scalar $\|v\|$ defined by

$$\|\boldsymbol{v}\| = \sqrt{\boldsymbol{v} \cdot \boldsymbol{v}} = \sqrt{v_1^2 + \dots + v_n^2}$$

Definition

The **length** (or **norm**) of v is the nonnegative scalar $\|v\|$ defined by

$$\|\boldsymbol{v}\| = \sqrt{\boldsymbol{v} \cdot \boldsymbol{v}} = \sqrt{v_1^2 + \dots + v_n^2}$$

• A vector whose length is 1 is called a **unit vector**.

Definition

The **length** (or **norm**) of v is the nonnegative scalar $\|v\|$ defined by

$$\|\boldsymbol{v}\| = \sqrt{\boldsymbol{v} \cdot \boldsymbol{v}} = \sqrt{v_1^2 + \dots + v_n^2}$$

- A vector whose length is 1 is called a **unit vector**.
- Normalizing If we divide a nonzero vector v by its length, we obtain a unit vector v.

positivity

- positivity
- scalability

- positivity
- scalability
- triangular inequality

- positivity
- scalability
- triangular inequality

Let $\boldsymbol{v} = \begin{bmatrix} 1 & -2 & 2 & 0 \end{bmatrix}^T$. Find a unit vector \boldsymbol{u} in the same direction as \boldsymbol{v}

Distance

For u and v in \mathbb{R}^n , the distance between u and v, written as $\operatorname{dist}(u, v)$, is the length of the vector u - v.

$$\mathsf{dist}(oldsymbol{u},oldsymbol{v}) = \|oldsymbol{u} - oldsymbol{v}\|$$

Distance -Very Important

For u and v in \mathbb{R}^n , the **distance between** u and v, written as $\operatorname{dist}(u,v)$, is the length of the vector u-v.

$$\mathsf{dist}(oldsymbol{u},oldsymbol{v}) = \|oldsymbol{u} - oldsymbol{v}\|$$

Let
$${m u}=(u_1,u_2,u_3)$$
 and ${m v}=(v_1,v_2,v_3)$, then

 $\mathsf{dist}(oldsymbol{u},oldsymbol{v})$

Let
$$u = (u_1, u_2, u_3)$$
 and $v = (v_1, v_2, v_3)$, then

$$\mathsf{dist}(oldsymbol{u},oldsymbol{v}) = \|oldsymbol{u} - oldsymbol{v}\|$$

Let
$$u = (u_1, u_2, u_3)$$
 and $v = (v_1, v_2, v_3)$, then

$$\mathsf{dist}(oldsymbol{u},oldsymbol{v}) \ = \|oldsymbol{u}-oldsymbol{v}\| = \sqrt{(oldsymbol{u}-oldsymbol{v})\cdot(oldsymbol{u}-oldsymbol{v})}$$

Let $u = (u_1, u_2, u_3)$ and $v = (v_1, v_2, v_3)$, then

Outline

Inner Product

- Length of a Vector
- Orthogonal

Orthogonal Vectors

Consider \mathbb{R}^2 or \mathbb{R}^3 . Two lines (vectors) are **geometrically perpendicular** if and only if the distance from \boldsymbol{u} to \boldsymbol{v} is the same as the distance from \boldsymbol{u} to $-\boldsymbol{v}$.

Definition

Two vectors u and v in \mathbb{R}^n are **orthogonal** (to each other) if $u \cdot v = 0$.

$$\begin{split} \left[\, \operatorname{dist}(\mathbf{u},-\mathbf{v}) \, \right]^2 &= \|\mathbf{u} - (-\mathbf{v})\|^2 = \|\mathbf{u} + \mathbf{v}\|^2 \\ &= (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) \\ &= \mathbf{u} \cdot (\mathbf{u} + \mathbf{v}) + \mathbf{v} \cdot (\mathbf{u} + \mathbf{v}) & \text{Theorem 1(b)} \\ &= \mathbf{u} \cdot \mathbf{u} + \mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{u} + \mathbf{v} \cdot \mathbf{v} & \text{Theorem 1(a), (b)} \\ &= \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 + 2\mathbf{u} \cdot \mathbf{v} & \text{Theorem 1(a)} & = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 - 2\mathbf{u} \cdot \mathbf{v} \end{split}$$

Definition

Two vectors u and v in \mathbb{R}^n are **orthogonal** (to each other) if $u \cdot v = 0$.

Zero vector is orthogonal to every vector.

The Pythagorean Theorem

Two vectors $oldsymbol{u}$ and $oldsymbol{v}$ are orthogonal if and only if

$$\|\boldsymbol{u} + \boldsymbol{v}\|^2 = \|\boldsymbol{u}\|^2 + \|\boldsymbol{v}\|^2$$

The Pythagorean Theorem

Two vectors $oldsymbol{u}$ and $oldsymbol{v}$ are orthogonal if and only if

$$\|m{u} + m{v}\|^2 = \|m{u}\|^2 + \|m{v}\|^2$$

• If a vector z is orthogonal to every vector in a subspace W of \mathbb{R}^n , then z is said to be **orthogonal to** W.

The Pythagorean Theorem

Two vectors $oldsymbol{u}$ and $oldsymbol{v}$ are orthogonal if and only if

$$\|\boldsymbol{u} + \boldsymbol{v}\|^2 = \|\boldsymbol{u}\|^2 + \|\boldsymbol{v}\|^2$$

- If a vector z is orthogonal to every vector in a subspace W of \mathbb{R}^n , then z is said to be **orthogonal to** W.
- The set of all vectors that are orthogonal to W is called the **orthogonal complement** of W, and is denoted by W^{\perp} .

Properties of W^{\perp}

• A vector x is in W^{\perp} if and only if x is orthogonal to every vector in a set that spans W.

Properties of W^{\perp}

- A vector x is in W^{\perp} if and only if x is orthogonal to every vector in a set that spans W.
- W^{\perp} is a subspace of \mathbb{R}^n .

Orthogonal 00000000

Theorem

Let A be an $m \times n$ matrix. The orthogonal complement of the row space of A is the null space of A, and the orthogonal complement of the column space of A is the null space of A^T :

$$(\mathsf{Row} A)^\perp = \mathsf{Nul} A \ \ \mathsf{and} \ \ (\mathsf{Col} A)^\perp = \mathsf{Nul} A^T$$

Exercises

• Find a unit vector in the direction of the given vector.

$$\begin{bmatrix} -3\\4 \end{bmatrix} \quad \begin{bmatrix} 7/4\\1/2\\1 \end{bmatrix}$$

Exercises

• Find a unit vector in the direction of the given vector.

$$\begin{bmatrix} -3\\4 \end{bmatrix} \quad \begin{bmatrix} 7/4\\1/2\\1 \end{bmatrix}$$

ullet Find the distance between $m{x}=egin{bmatrix} 10 \ -3 \end{bmatrix}$ and $m{y}=egin{bmatrix} -1 \ -5 \end{bmatrix}$

Exercises

- Telling True or False.
 - $v \cdot v = ||v||^2.$
 - For a square matrix A, vectors in $\mathrm{Col}A$ are orthogonal to vectors in $\mathrm{Nul}A$.
 - If vectors v_1, \cdots, v_p span a subspace W and if x is orthogonal to each v_j for $j=1,\cdots,p$, then x is in W^{\perp} .