6.2 Orthogonal Sets

Nooshin Maghsoodi

Noshirvani University

These slides are adapted from Linear Algebra course in UESTC

Outline

- Orthogonal Sets
- Orthogonal Basis
- Orthogonal Projection
- Orthonormal Sets

Outline

- Orthogonal Sets
- Orthogonal Basis
- Orthogonal Projection
- Orthonormal Sets

Orthogonal Set

Definition

A set of vectors $\{u_1, \ldots, u_p\}$ in \mathbb{R}^n is said to be an **orthogonal set** if each pair of distinct vectors from the set is orthogonal, that is, if $u_i \cdot u_j = 0$ whenever $i \neq j$.

Show that $\{u_1, u_2, u_3\}$ is an orthogonal set, where

$$oldsymbol{u}_1 = egin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, oldsymbol{u}_2 = egin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, oldsymbol{u}_3 = egin{bmatrix} -1/2 \\ -2 \\ 7/2 \end{bmatrix}$$

Show that $\{u_1, u_2, u_3\}$ is an orthogonal set, where

$$oldsymbol{u}_1 = egin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, oldsymbol{u}_2 = egin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, oldsymbol{u}_3 = egin{bmatrix} -1/2 \\ -2 \\ 7/2 \end{bmatrix}$$

If $S = \{u_1, \dots, u_p\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is **linearly independent** and hence is a basis for the subspace spanned by S.

PROOF If
$$\mathbf{0} = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p$$
 for some scalars c_1, \dots, c_p , then
$$0 = \mathbf{0} \cdot \mathbf{u}_1 = (c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p) \cdot \mathbf{u}_1$$
$$= (c_1 \mathbf{u}_1) \cdot \mathbf{u}_1 + (c_2 \mathbf{u}_2) \cdot \mathbf{u}_1 + \dots + (c_p \mathbf{u}_p) \cdot \mathbf{u}_1$$
$$= c_1 (\mathbf{u}_1 \cdot \mathbf{u}_1) + c_2 (\mathbf{u}_2 \cdot \mathbf{u}_1) + \dots + c_p (\mathbf{u}_p \cdot \mathbf{u}_1)$$
$$= c_1 (\mathbf{u}_1 \cdot \mathbf{u}_1)$$

Outline

- Orthogonal Sets
- Orthogonal Basis
- Orthogonal Projection
- Orthonormal Sets

Orthogonal Basis

Definition

An **orthogonal basis** for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set.

Orthogonal Basis

Definition

An **orthogonal basis** for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set.

• An orthogonal basis is much nicer than other basis.

Let $\{u_1, \ldots, u_p\}$ be an **orthogonal basis** for a subspace W of \mathbb{R}^n . For each $y \in W$, the weights in the linear combination

$$\boldsymbol{y} = c_1 \boldsymbol{u}_1 + \dots + c_p \boldsymbol{u}_p$$

are given by

$$c_j = \frac{\boldsymbol{y} \cdot \boldsymbol{u}_j}{\boldsymbol{u}_j \cdot \boldsymbol{u}_j} \ (j = 1, \dots, p)$$

Example

$$m{u}_1 = egin{bmatrix} 1 \ 0 \ 1 \end{bmatrix}, m{u}_2 = egin{bmatrix} -1 \ 4 \ 1 \end{bmatrix}, m{u}_3 = egin{bmatrix} 2 \ 1 \ -2 \end{bmatrix} \ \ ext{and} \ m{x} = egin{bmatrix} 8 \ -4 \ -3 \end{bmatrix}$$

Outline

- Orthogonal Sets
- Orthogonal Basis
- Orthogonal Projection
- Orthonormal Sets

Problem of Orthogonal Decomposition

Given a nonzero vector $u \in \mathbb{R}^n$, consider the problem of decomposing a vector $y \in \mathbb{R}^n$ into the sum of two vectors, one a multiple of u and the other **orthogonal** to u.

Problem of Orthogonal Decomposition

Given a nonzero vector $u \in \mathbb{R}^n$, consider the problem of decomposing a vector $y \in \mathbb{R}^n$ into the sum of two vectors, one a multiple of u and the other **orthogonal** to u.Write

$$oldsymbol{y} = \hat{oldsymbol{y}} + oldsymbol{z}$$

where $\hat{\boldsymbol{y}} = \alpha \boldsymbol{u}$ for some scalar α and \boldsymbol{z} is some vector orthogonal to \boldsymbol{u} .

The vector \hat{y} is called the **orthogonal projection of** y **onto** u,

The vector \hat{y} is called the **orthogonal projection of** y **onto** u, and the vector z is called the **component of** y **orthogonal to** u.

The vector \hat{y} is called the **orthogonal projection of** y **onto** u, and the vector z is called the **component of** y **orthogonal to** u.

• Consider the orthogonal projection of y onto cu.

The vector \hat{y} is called the **orthogonal projection of** y **onto** u, and the vector z is called the **component of** y **orthogonal to** u.

- Consider the orthogonal projection of y onto cu.
- Sometimes \hat{y} is denoted by $proj_L y$ and is called the orthogonal projection of y onto L.

$$\hat{m{y}} = \mathsf{proj}_L m{y} = rac{m{y} \cdot m{u}}{m{u} \cdot m{u}} m{u}$$

Example |

Orthogonal Sets

Let
$$m{y} = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$$
 and $m{u} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$. Find the orthogonal projection of $m{y}$ on to span $\{ m{u} \}$.

Orthogonal Sets

Let $m{y} = \begin{bmatrix} 7 \\ 6 \end{bmatrix}$ and $m{u} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$. Find the orthogonal projection of $m{y}$ on to span $\{\bar{u}\}$.

0000

$$\mathbf{u} \cdot \mathbf{u} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 20$$

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} = \frac{40}{20} \mathbf{u} = 2 \begin{bmatrix} 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \end{bmatrix}$$

$$\mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} 7 \\ 6 \end{bmatrix} - \begin{bmatrix} 8 \\ 4 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 7 \\ 6 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \end{bmatrix} + \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

 $\mathbf{y} \cdot \mathbf{u} = \begin{bmatrix} 7 \\ 6 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 40$

Outline

- Orthogonal Sets
- Orthogonal Basis
- Orthogonal Projection
- Orthonormal Sets

Orthonormal Sets

Definition

• A set $\{u_1, \ldots, u_p\}$ is an **orthonormal set** if it is an orthogonal set of **unit vectors**.

Orthonormal Sets

Definition

- A set $\{u_1, \ldots, u_p\}$ is an **orthonormal set** if it is an orthogonal set of **unit vectors**.
- If W is the subspace spanned by such a set, then $\{u_1, \ldots, u_p\}$ is an orthonormal basis for W.

Orthonormal Sets

Definition

- A set $\{u_1, \ldots, u_p\}$ is an orthonormal set if it is an orthogonal set of unit vectors.
- If W is the subspace spanned by such a set, then $\{u_1, \ldots, u_p\}$ is an orthonormal basis for W.
- The standard basis $\{e_1, \dots, e_n\}$ is an **orthonormal basis**.

Example

Check that

$$\left\{ \begin{bmatrix} 3/\sqrt{11} \\ 1/\sqrt{11} \\ 1/\sqrt{11} \end{bmatrix}, \begin{bmatrix} -1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}, \begin{bmatrix} -1/\sqrt{66} \\ -4/\sqrt{66} \\ 7/\sqrt{66} \end{bmatrix} \right\}$$

form an orthonormal basis of \mathbb{R}^3 .

$$\mathbf{v_1} \cdot \mathbf{v_2} = -3/\sqrt{66} + 2/\sqrt{66} + 1/\sqrt{66} = 0$$
 $\mathbf{v_1} \cdot \mathbf{v_1} = 9/11 + 1/11 + 1/11 = 1$ $\mathbf{v_1} \cdot \mathbf{v_3} = -3/\sqrt{726} - 4/\sqrt{726} + 7/\sqrt{726} = 0$ $\mathbf{v_2} \cdot \mathbf{v_2} = 1/6 + 4/6 + 1/6 = 1$ $\mathbf{v_2} \cdot \mathbf{v_3} = 1/\sqrt{396} - 8/\sqrt{396} + 7/\sqrt{396} = 0$ $\mathbf{v_3} \cdot \mathbf{v_3} = 1/66 + 16/66 + 49/66 = 1$

An $m \times n$ matrix U has orthonormal columns if and only if $U^T U = I$.

$$U^{T}U = \begin{bmatrix} \mathbf{u}_{1}^{T} \\ \mathbf{u}_{2}^{T} \\ \mathbf{u}_{3}^{T} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{1} & \mathbf{u}_{2} & \mathbf{u}_{3} \end{bmatrix} = \begin{bmatrix} \mathbf{u}_{1}^{T}\mathbf{u}_{1} & \mathbf{u}_{1}^{T}\mathbf{u}_{2} & \mathbf{u}_{1}^{T}\mathbf{u}_{3} \\ \mathbf{u}_{2}^{T}\mathbf{u}_{1} & \mathbf{u}_{2}^{T}\mathbf{u}_{2} & \mathbf{u}_{2}^{T}\mathbf{u}_{3} \\ \mathbf{u}_{3}^{T}\mathbf{u}_{1} & \mathbf{u}_{3}^{T}\mathbf{u}_{2} & \mathbf{u}_{3}^{T}\mathbf{u}_{3} \end{bmatrix}$$

An $m \times n$ matrix U has orthonormal columns if and only if $U^TU = I$.

Theorem

Let U be an $m \times n$ matrix with orthonormal columns, and let \boldsymbol{x} and \boldsymbol{y} be in \mathbb{R}^n . Then

- ||Ux|| = ||x||
- $\bullet (U\boldsymbol{x}) \cdot (U\boldsymbol{y}) = \boldsymbol{x} \cdot \boldsymbol{y}$
- $(U\boldsymbol{x})\cdot(U\boldsymbol{y})=0$ if and only if $\boldsymbol{x}\cdot\boldsymbol{y}=0$

An $m \times n$ matrix U has orthonormal columns if and only if $U^TU = I$.

Theorem

Let U be an $m \times n$ matrix with orthonormal columns, and let \boldsymbol{x} and \boldsymbol{y} be in \mathbb{R}^n . Then

- ||Ux|| = ||x||
- $\bullet (U\boldsymbol{x}) \cdot (U\boldsymbol{y}) = \boldsymbol{x} \cdot \boldsymbol{y}$
- $(U\boldsymbol{x}) \cdot (U\boldsymbol{y}) = 0$ if and only if $\boldsymbol{x} \cdot \boldsymbol{y} = 0$

If U is a square matrix, it is called an **orthogonal matrix**.

• Let $u_1=\begin{bmatrix} -1/\sqrt{5} \\ 2/\sqrt{5} \end{bmatrix}$ and $u_2=\begin{bmatrix} 2/\sqrt{5} \\ 1/\sqrt{5} \end{bmatrix}$. Show that $\{u_1,u_2\}$ is an orthonormal basis for \mathbb{R}^2 .

- Let $m{y} = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$ and $m{u} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Find the orthogonal projection $\hat{m{y}}$ of $m{y}$ onto $m{u}$.
- Let U be an $n \times n$ orthogonal matrix. Show that $\det U = \pm 1$.