

LINEAR ALGEBRA Least Square Method

Nooshin Maghsoodi NOSHIRVANI UNIVERSITY

QR factorization

If one has a matrix A with linearly independent columns, one can split it as

$$
A=QR
$$

where Q is an orthogonal matrix and R is upper-triangular.

How? Apply the Gram-Schmidt algorithm to the columns of A! Let $A = [\boldsymbol{a}_1 : \boldsymbol{a}_2 : \boldsymbol{a}_3]$. The Gram-Schmidt algorithm will yield orthonormal x_1, x_2, x_3 such that but one can normalize it in the end) $span(\boldsymbol{a}_1) = span(\boldsymbol{x}_1);$ $a_1 = r_{11}x_1$ (this is just a consequence of equality

$$
\text{span}(a_1, a_2) = \text{span}(x_1, x_2);
$$

\n
$$
\text{span}(a_1, a_2, a_3) = \text{span}(x_1, x_2, x_3).
$$

(these equalities basically say that x_1 is constructed just from a_1 , then x_2 is constructed only from a_1 and a_2 , etc.)

$$
a_1 = r_{11}x_1
$$
 the abstract fact of
\n
$$
a_2 = r_{12}x_1 + r_{22}x_2
$$
 between spans)
\n
$$
a_3 = r_{13}x_1 + r_{23}x_2 + r_{33}x_3
$$

\nor
\n
$$
a_1 : a_2 : a_3] = [x_1 : x_2 : x_3] \cdot \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{33} \end{bmatrix}
$$

(the GS yields an orthogonal basis,

QR factorization continued

Example. Compute the QR factorization of $A =$ $1 \t 0 \t -2$ 1 −1 0 1 .

Solution. We need to compute two matrices: Q and R .

To compute Q , run the Gram-Schmidt algorithm for the columns of A : (don't forget to normalize in the end, for we need an orthonormal basis, not merely orthogonal)

$$
x_1 := \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}
$$

\n
$$
x_2 := \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} - \frac{0}{5} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}
$$

\n
$$
x_3 := \begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix} - \frac{0}{5} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} - \frac{-1}{1} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}
$$

\n
$$
x_4 := \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix} - \frac{0}{5} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} - \frac{-1}{1} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}
$$

Now normalize:

$$
\begin{bmatrix} \frac{1}{\sqrt{5}} \\ 0 \\ \frac{2}{\sqrt{5}} \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -\frac{2}{\sqrt{5}} \\ 0 \\ \frac{1}{\sqrt{5}} \end{bmatrix}
$$

QR factorization continued

Example. Compute the QR factorization of $A =$ $1 \t 0 \t -2$ $0 \t 1 \t -1$. 0 1 $Q=$ −2 1 0 The simplest way to find R is to solve for R in $A = QR$: $A = QR$ $Q^{-1}A = R$ $Q^{T}A = R$ $(Q^{-1} = Q^T$ for orthogonal matrices) $R=$ 1 0 −2 ⋅ $1 \t 0 \t -2$ 1 −1 0 1 $\frac{1}{2}\sqrt{5}$ 0 0 1 −1 $0 \t 0 \t \sqrt{5}$ Answer. $1 \t 0 \t -2$ $0 \t1 \t -1$ 0 1 = −2 1 0 0 0 1 −1 $0 \quad 0 \quad \sqrt{5}$ A $\sqrt{5}$ $\sqrt{5}$ R

 \overline{Q}

QR FACTORIZATION CONTINUED

The QR Factorization

If A is an $m \times n$ matrix with linearly independent columns, then A can be factored as $A = QR$, where Q is an $m \times n$ matrix whose columns form an orthonormal basis for Col A and R is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal.

LEAST SQUARE

- Sometimes, $Ax = b$ has no solution.
- When a solution is demanded and none exists, the best one can do is to find an x that makes Ax as close as possible to b.

residual is $r = Ax - b$ least squares problem: choose x to minimize $||Ax - b||^2$ $||Ax - b||^2$ is the objective function

If A is $m \times n$ and b is in \mathbb{R}^m , a least-squares solution of $Ax = b$ is an \hat{x} in \mathbb{R}^n such that

$$
\|\mathbf{b} - A\hat{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\|
$$

for all **x** in \mathbb{R}^n .

LEAST SQUARE

Because $\hat{\mathbf{b}}$ is in the column space of A, the equation $A\mathbf{x} = \hat{\mathbf{b}}$ is consistent, and there is an $\hat{\mathbf{x}}$ in \mathbb{R}^n such that

$$
A\hat{\mathbf{x}} = \hat{\mathbf{b}}\tag{1}
$$

LEAST SQUARE

The set of least-squares solutions of $Ax = b$ coincides with the nonempty set of solutions of the normal equations $A^T A \mathbf{x} = A^T \mathbf{b}$.

EXAMPLE

Find a least-squares solution of the inconsistent system $Ax = b$ for

$$
A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}
$$

SOLUTION

$$
A^{T}A = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix}
$$

\n
$$
A^{T}b = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix} = \begin{bmatrix} 19 \\ 11 \end{bmatrix}
$$

\n
$$
\hat{\mathbf{x}} = (A^{T}A)^{-1}A^{T}b
$$

\n
$$
= \frac{1}{84} \begin{bmatrix} 5 & -1 \\ -1 & 17 \end{bmatrix} \begin{bmatrix} 19 \\ 11 \end{bmatrix} = \frac{1}{84} \begin{bmatrix} 84 \\ 168 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}
$$

\n*uiviv-ib.*

EXAMPLE2

Find a least-squares solution of $Ax = b$ for

$$
A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} -3 \\ -1 \\ 0 \\ 2 \\ 5 \\ 1 \end{bmatrix}
$$

SOLUTION Compute

$$
A^{T}A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 2 & 2 & 2 \\ 2 & 2 & 0 & 0 \\ 2 & 0 & 2 & 0 \\ 2 & 0 & 0 & 2 \end{bmatrix}
$$

$$
A^{T}b = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ -1 \\ 0 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ -4 \\ 2 \\ 6 \end{bmatrix}
$$

EXAMPLE2 (CONTINUE)

The augmented matrix for $A^T A \mathbf{x} = A^T \mathbf{b}$ is

$$
\hat{\mathbf{x}} = \begin{bmatrix} 3 \\ -5 \\ -2 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -1 \\ 1 \\ 1 \\ 1 \end{bmatrix}
$$

THEOREME

Let A be an $m \times n$ matrix. The following statements are logically equivalent:

- a. The equation $Ax = b$ has a unique least-squares solution for each b in \mathbb{R}^m .
- b. The columns of A are linearly independent.
- c. The matrix A^TA is invertible.

When these statements are true, the least-squares solution \hat{x} is given by

$$
\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b} \tag{4}
$$

AN ALTERNATIVE WAY OF COMPUTATION

Given an $m \times n$ matrix A with linearly independent columns, let $A = QR$ be a QR factorization of A as in Theorem 12. Then, for each **b** in \mathbb{R}^m , the equation $A**x** = **b**$ has a unique least-squares solution, given by

$$
\hat{\mathbf{x}} = R^{-1} Q^T \mathbf{b} \tag{6}
$$

EXAMPLE

Find the least-squares solution of $A\mathbf{x} = \mathbf{b}$ for

$$
A = \begin{bmatrix} 1 & 3 & 5 \\ 1 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 3 & 3 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 3 \\ 5 \\ 7 \\ -3 \end{bmatrix}
$$

SOLUTION

$$
A = QR = \begin{bmatrix} 1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & -1/2 \\ 1/2 & -1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 5 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{bmatrix}
$$

Then

$$
Q^T \mathbf{b} = \begin{bmatrix} 1/2 & 1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & -1/2 & 1/2 \\ 1/2 & -1/2 & 1/2 & -1/2 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \\ 7 \\ -3 \end{bmatrix} = \begin{bmatrix} 6 \\ -6 \\ 4 \end{bmatrix}
$$

The least-squares solution $\hat{\mathbf{x}}$ satisfies $R\mathbf{x} = Q^T\mathbf{b}$; that is,

$$
\begin{bmatrix} 2 & 4 & 5 \ 0 & 2 & 3 \ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} = \begin{bmatrix} 6 \ -6 \ 4 \end{bmatrix}
$$

This equation is solved easily and yields $\hat{\mathbf{x}} = \begin{bmatrix} 10 \ -6 \ 2 \end{bmatrix}$.

SOME APPLICATIONS

- **Least Square Data Fitting**
- **Least Square Classification**

► we believe a scalar *y* and an *n*-vector *x* are related by *model*

 y ≈ *f*(*x*)

- ► *x* is called the *independent variable*
- ► *y* is called the *outcome* or *response variable*
- \blacktriangleright $f: \mathbb{R}^n \rightarrow \mathbb{R}$ gives the relation between *x* and *y*
- \triangleright often x is a feature vector, and y is something we want to predict
- ► we don't know *f* , which gives the 'true' relationship between *x* and *y*

Example

► we are given some *data*

$$
x^{(1)}, \ldots, x^{(N)}, \qquad y^{(1)}, \ldots, y^{(N)}
$$

also called *observations*, *examples*, *samples*, or *measurements*

 \blacktriangleright $x^{(i)}$, $y^{(i)}$ is *i*th *data pair*

 \blacktriangleright $x_j^{(i)}$ is the *j*th component of *i*th data point $x^{(i)}$

► choose *model* \hat{f} : \mathbf{R}^n → \mathbf{R} , a guess or *approximation* of *f*

► *linear in the parameters* model form:

$$
\hat{f}(x) = \Theta_1 f_1(x) + \cdots + \Theta_p f_p(x)
$$

- \blacktriangleright $f_i: \mathbf{R}^n \rightarrow \mathbf{R}$ are *basis functions* that we choose
- ► θ*i* are *model parameters* that we choose
- ► $y^{(i)} = f(x^{(i)})$ is (the model's) *prediction* of $y^{(i)}$
- ► we'd like $y^{(i)}$ \approx $y^{(i)}$, *i.e.*, model is consistent with observed data

► *prediction error* or *residual* is $r_i = y^{(i)} - y^{(i)}$

► *least squares data fitting*: choose model parameters θ*i* to minimize RMS prediction error on data set

$$
\left(\frac{(r^{(1)})^2 + \dots + (r^{(N)})^2}{N}\right)^{1/2}
$$

► this can be formulated (and solved) as a least squares problem

 \blacktriangleright express $y^{(i)}$, $y^{(i)}$, and $r^{(i)}$ as N-vectors $\mathcal{L} - y^{\text{d}} = (y^{(1)}, \; \dots, y^{(N)})$ is vector ofoutcomes $\hspace{0.1 cm} \to \hspace{0.1 cm} \mathcal{Y}^{\mathbf d} \hspace{-0.02 cm} = (\mathcal{Y}^{(1)}, \ldots, \mathcal{Y}^{(\mathcal{N})})$ is vector of predictions r^{-} r^{d} = $(r^{(1)},$ $\ldots, r^{(N)}$) is vector ofresiduals

► define *N* ×*p* matrix *A* with elements $A_{ij} = f_j(x^{(i)})$, so $y^{d} = A\theta$

 \blacktriangleright least squares data fitting: choose θ to minimize

$$
\|r^{d}\|^{2} = \|y^{d} - y^{d}\|^{2} = \|y^{d} - A\theta\|^{2} = \|A\theta - y^{d}\|^{2}
$$

 \blacktriangleright $\theta = (A^T A)^{-1} A^T y$ (if columns of *A* are linearly independent)

► ǁ*A*θˆ − *y*ǁ ²/*N* is *minimum mean-square (fitting) error*

LEAST SQUARE CLASSIFICATION

- \blacktriangleright data fitting with outcome that takes on (non-numerical) values like
	- true orfalse
	- spam or not spam
	- dog, horse, or mouse
- ► outcome values are called *labels* or *categories*
- ► data fitting is called *classification*
- \triangleright we start with case when there are two possible outcomes
- ► called *Boolean* or *2-way* classification
- \triangleright we encode outcomes as $+1$ (true) and -1 (false)

► classifier has form $\hat{y} = \hat{f}(x), f : \mathbb{R}^n \to \{-1, +1\}$