

Linear Algebra Singular Value Decomposition Nooshin Maghsoodi

Noshirvani University

A representational view of matrices

Inner Product = Dot product

Dot product = Row Vector * Column Vector = Scalar

Matrix multiplication

The outer product

• What if we do matrix multiplication, but when the two matrices are a single column and row vector?

• Output is a *matrix*, not a scalar.

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 3 & 4 \end{bmatrix} = \begin{bmatrix} (1 & 3) & (1 & 4) \\ (2 & 3) & (2 & 4) \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix}$$

Remember this?

Identity

Orthogonal matrices

- square shape (dimensionality-preserving)
- rows are orthogonal unit vectors
- columns are orthogonal unit vectors
- perform a rotation (with possible axis inversion)
- preserve vector lengths and angles
- inverse is transpose (also orthogonal)

Diagonal matrices

- arbitrary rectangular shape
- off-diagonal entries are zero
- squeeze/stretch along standard axes
- can create/discard standard axes
- (pseudo) inverse: diagonal, with inverse of non-zero diagonal entries of original

M = U SV^T Orthogonal ("Rotate") Diagonal ("Stretch")

SVD can be interpreted as

- A sum of outer products!
- Decomposing the matrix into a sum of scaled outer products.
- Key insight: The operations on respective dimensions stay separate from each other, all the way – through v, ∑ and u.
- They are grouped, each operating on another piece of the input.

For an $m \times n$ matrix **A** of rank *r* there exists a factorization (Singular Value Decomposition = **SVD**) as follows:

The columns of **V** are orthogonal eigenvectors of $A^{T}A$. Eigenvalues $\lambda_{1} \dots \lambda_{r}$ of AA^{T} are the eigenvalues of $A^{T}A$.

$$\Sigma = diag(\sigma_1 ... \sigma_r)$$
Assume they are arranged in decreasing order and
r is rank of A
The columns of **U** are orthogonal eigenvectors of **AA**^T.
Its first r rows equal:
$$\mathbf{u}_i = \frac{1}{\|A\mathbf{v}_i\|} A\mathbf{v}_i = \frac{1}{\sigma_i} A\mathbf{v}_i$$

The decomposition of A involves an $m \times n$ "diagonal" matrix Σ of the form

$$\Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} - m - r \text{ rows}$$
(3)
$$\sum_{n=1}^{\infty} n - r \text{ columns}$$

where D is an $r \times r$ diagonal matrix for some r not exceeding the smaller of m and n. (If r equals m or n or both, some or all of the zero matrices do not appear.)

The decomposition of A involves an $m \times n$ "diagonal" matrix Σ of the form

$$\Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} - m - r \text{ rows}$$
(3)
$$n - r \text{ columns}$$

where D is an $r \times r$ diagonal matrix for some r not exceeding the smaller of m and n. (If r equals m or n or both, some or all of the zero matrices do not appear.)

The Singular Value Decomposition

Let A be an $m \times n$ matrix with rank r. Then there exists an $m \times n$ matrix Σ as in (3) for which the diagonal entries in D are the first r singular values of A, $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$, and there exist an $m \times m$ orthogonal matrix U and an $n \times n$ orthogonal matrix V such that

$$A = U\Sigma V^T$$

• Illustration of SVD dimensions and sparseness

SVD example

Let
$$A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$$

Step 1. Find an orthogonal diagonalization of $A^T A$.

$$A^{T}A = \begin{bmatrix} 4 & 8\\ 11 & 7\\ 14 & -2 \end{bmatrix} \begin{bmatrix} 4 & 11 & 14\\ 8 & 7 & -2 \end{bmatrix} = \begin{bmatrix} 80 & 100 & 40\\ 100 & 170 & 140\\ 40 & 140 & 200 \end{bmatrix}$$
$$\lambda_{1} = 360, \lambda_{2} = 90, \text{ and } \lambda_{3} = 0$$
$$\mathbf{v}_{1} = \begin{bmatrix} 1/3\\ 2/3\\ 2/3 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} -2/3\\ -1/3\\ 2/3 \end{bmatrix}, \quad \mathbf{v}_{3} = \begin{bmatrix} 2/3\\ -2/3\\ 1/3 \end{bmatrix}$$

SVD example

Let
$$A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$$

Step 2. Set up V and Σ $V = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3] = \begin{bmatrix} 1/3 & -2/3 & 2/3 \\ 2/3 & -1/3 & -2/3 \\ 2/3 & 2/3 & 1/3 \end{bmatrix}$ $\sigma_1 = 6\sqrt{10}, \quad \sigma_2 = 3\sqrt{10}, \quad \sigma_3 = 0$

$$D = \begin{bmatrix} 6\sqrt{10} & 0\\ 0 & 3\sqrt{10} \end{bmatrix}, \qquad \Sigma = \begin{bmatrix} D & 0 \end{bmatrix} = \begin{bmatrix} 6\sqrt{10} & 0 & 0\\ 0 & 3\sqrt{10} & 0 \end{bmatrix}$$

SVD example

Let
$$A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$$

Step 3. Construct U.
 $\mathbf{u}_1 = \frac{1}{\sigma_1} A \mathbf{v}_1 = \frac{1}{6\sqrt{10}} \begin{bmatrix} 18 \\ 6 \end{bmatrix} = \begin{bmatrix} 3/\sqrt{10} \\ 1/\sqrt{10} \end{bmatrix}$
 $\mathbf{u}_2 = \frac{1}{\sigma_2} A \mathbf{v}_2 = \frac{1}{3\sqrt{10}} \begin{bmatrix} 3 \\ -9 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{10} \\ -3/\sqrt{10} \end{bmatrix}$
 $= \begin{bmatrix} 3/\sqrt{10} & 1/\sqrt{10} \\ 1/\sqrt{10} & -3/\sqrt{10} \end{bmatrix} \begin{bmatrix} 6\sqrt{10} & 0 & 0 \\ 0 & 3\sqrt{10} & 0 \end{bmatrix} \begin{bmatrix} 1/3 & 2/3 & 2/3 \\ -2/3 & -1/3 & 2/3 \\ 2/3 & -2/3 & 1/3 \end{bmatrix}$
 \uparrow
 U Σ V^T

A