1.3 Vector Equations

Nooshin Maghsoodi

Noshirvani University

These slides are adapted from Linear Algebra course in UESTC

Outline

- Vectors in \mathbb{R}^2
- **2** Geometric Description of \mathbb{R}^2
- lacksquare Vectors in \mathbb{R}^3 , \mathbb{R}^n
- Linear Combinations
- Span

Vector

A ordered list of numbers

Vector

- A ordered list of numbers
- A matrix with only one column is called a column vector, or simply a vector

Vector

- A ordered list of numbers
- A matrix with only one column is called a column vector, or simply a vector
- First, consider vectors with two entries

$$x = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \quad u = \begin{bmatrix} 0.1 \\ 0 \end{bmatrix} \quad w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

Vector

- A ordered list of numbers
- A matrix with only one column is called a column vector, or simply a vector
- First, consider vectors with two entries

$$x = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \quad u = \begin{bmatrix} 0.1 \\ 0 \end{bmatrix} \quad w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

• \mathbb{R}^2 : the set of all vectors with two entries.

Operations

Given two vectors u and v in \mathbb{R}^2 ,

Operations

Given two vectors u and v in \mathbb{R}^2 ,

- Equality: they are equal if and only if their corresponding entries are equal.
- Sum: their sum is the vector u + v obtained by adding corresponding entries of u and v.

Operations

Given two vectors u and v in \mathbb{R}^2 ,

- Equality: they are equal if and only if their corresponding entries are equal.
- Sum: their sum is the vector u + v obtained by adding corresponding entries of u and v.
- Scalar multiple: given a real number c, the scalar multiple of u and c is the vector cu obtained by multiplying each entry in u by c.

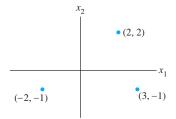
Example

Given
$$u=\begin{bmatrix} -1\\2 \end{bmatrix}$$
 and $v=\begin{bmatrix} 2\\4 \end{bmatrix}$, find $4u$, $(-2)v$, and $4u+(-2)v$.

Consider a rectangular coordinate system in the plane.

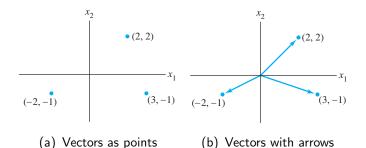
Consider a rectangular coordinate system in the plane. each geometric point $(a,b)\longleftrightarrow$ the column vector $\begin{bmatrix} a\\b \end{bmatrix}$

Consider a rectangular coordinate system in the plane. each geometric point $(a,b)\longleftrightarrow$ the column vector $\begin{bmatrix} a\\b \end{bmatrix}$



(a) Vectors as points

Consider a rectangular coordinate system in the plane. each geometric point $(a,b) \longleftrightarrow$ the column vector $\begin{bmatrix} a \\ b \end{bmatrix}$



If u and v in \mathbb{R}^2 are represented as points in the plane, then u+v corresponds to the fourth vertex of the parallelogram whose other vertices are u,0 and v.

If u and v in \mathbb{R}^2 are represented as points in the plane, then u+v corresponds to the fourth vertex of the parallelogram whose other vertices are u,0 and v.

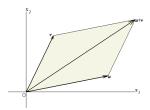
Example

The vectors
$$u=\begin{bmatrix} 3\\1 \end{bmatrix}, v=\begin{bmatrix} 1\\2 \end{bmatrix}$$
, and $u+v=\begin{bmatrix} 4\\3 \end{bmatrix}$.

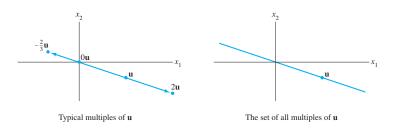
If u and v in \mathbb{R}^2 are represented as points in the plane, then u+v corresponds to the fourth vertex of the parallelogram whose other vertices are u,0 and v.

Example

The vectors
$$u=\begin{bmatrix} 3\\1 \end{bmatrix}, v=\begin{bmatrix} 1\\2 \end{bmatrix}$$
, and $u+v=\begin{bmatrix} 4\\3 \end{bmatrix}$.



Multiple of a Vector



$\overline{\mathsf{Vectors}}$ in \mathbb{R}^3

• Column vectors with three entries, i.e.

$$v = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} \text{ are vectors in } \mathbb{R}^3$$

• Column vectors with three entries, i.e.

$$v = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} \text{ are vectors in } \mathbb{R}^3$$

• All the vectors with three entries form \mathbb{R}^3

• Column vectors with three entries, i.e.

$$v = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} \text{ are vectors in } \mathbb{R}^3$$

- All the vectors with three entries form \mathbb{R}^3
- Setting up a coordinate system, each vector in \mathbb{R}^3 corresponds to a point in this coordinate system

• Column vectors with three entries, i.e.

$$v = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} \text{ are vectors in } \mathbb{R}^3$$

- All the vectors with three entries form \mathbb{R}^3
- Setting up a coordinate system, each vector in \mathbb{R}^3 corresponds to a point in this coordinate system

Linear Operations in \mathbb{R}^3

• Column vectors with three entries, i.e.

$$v = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} \text{ are vectors in } \mathbb{R}^3$$

- All the vectors with three entries form \mathbb{R}^3
- Setting up a coordinate system, each vector in \mathbb{R}^3 corresponds to a point in this coordinate system

Linear Operations in \mathbb{R}^3

• Sum and scalar multiple?

are vectors in \mathbb{R}^n

• Column vectors with n entries, i.e. $v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$

• Column vectors with n entries, i.e. $v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$

are vectors in \mathbb{R}^n

• All the vectors with n entries form \mathbb{R}^n

• Column vectors with n entries, i.e. $v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$

- are vectors in \mathbb{R}^n
- All the vectors with n entries form \mathbb{R}^n
- Generally, we cannot have a geometric description for \mathbb{R}^n

 \bullet Column vectors with ${\color{blue}n}$ entries, i.e. $v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$

- are vectors in \mathbb{R}^n
- All the vectors with n entries form \mathbb{R}^n
- Generally, we cannot have a geometric description for \mathbb{R}^n

Linear Operations in \mathbb{R}^n

• Column vectors with n entries, i.e. $v = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$

- are vectors in \mathbb{R}^n
- All the vectors with n entries form \mathbb{R}^n
- Generally, we cannot have a geometric description for \mathbb{R}^n

Linear Operations in \mathbb{R}^n

• Sum and scalar multiple?

Algebraic Properties of \mathbb{R}^n

For all \mathbf{u} , \mathbf{v} , \mathbf{w} in \mathbb{R}^n and all scalars c and d:

(i)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

(v)
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

(ii)
$$(u + v) + w = u + (v + w)$$

(vi)
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

(iii)
$$u + 0 = 0 + u = u$$

(vii)
$$c(d\mathbf{u}) = (cd)\mathbf{u}$$

(iv)
$$\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0}$$
,
where $-\mathbf{u}$ denotes $(-1)\mathbf{u}$

(viii)
$$1\mathbf{u} = \mathbf{u}$$

Linear Combinations of Vectors

Definition of Linear Combination

Given a set of vectors v_1, v_2, \cdots, v_k , where k is an integer, then

$$x_1v_1 + x_2v_2 + \dots + x_kv_k$$

is a **linear combination** of vectors v_1, v_2, \dots, v_k , where $x_1, x_2, \dots, x_k \in \mathbb{R}$.

Linear Combinations of Vectors

Definition of Linear Combination

Given a set of vectors v_1, v_2, \cdots, v_k , where k is an integer, then

$$x_1v_1 + x_2v_2 + \dots + x_kv_k$$

is a **linear combination** of vectors v_1, v_2, \dots, v_k , where $x_1, x_2, \dots, x_k \in \mathbb{R}$.

Example

$$2\begin{bmatrix} -1\\1 \end{bmatrix} - 0.5\begin{bmatrix} 2\\4 \end{bmatrix} + 2\begin{bmatrix} 0.5\\-0.5 \end{bmatrix}$$

Linear Combinations of Vectors

Definition of Linear Combination

Given a set of vectors v_1, v_2, \cdots, v_k , where k is an integer, then

$$x_1v_1 + x_2v_2 + \dots + x_kv_k$$

is a **linear combination** of vectors v_1, v_2, \dots, v_k , where $x_1, x_2, \dots, x_k \in \mathbb{R}$.

Example

$$2\begin{bmatrix} -1\\1 \end{bmatrix} - 0.5\begin{bmatrix} 2\\4 \end{bmatrix} + 2\begin{bmatrix} 0.5\\-0.5 \end{bmatrix} = \begin{bmatrix} -2\\-1 \end{bmatrix}$$

Example

Let
$$a_1 = \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix}$$
, $a_2 = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$ and $b = \begin{bmatrix} 7 \\ 4 \\ 3 \end{bmatrix}$.

Determine whether b can be generated (or written) as a linear combination of a_1 and a_2 .

Example

Let
$$a_1 = \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix}$$
, $a_2 = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$ and $b = \begin{bmatrix} 7 \\ 4 \\ 3 \end{bmatrix}$.

Determine whether b can be generated (or written) as a linear combination of a_1 and a_2 . That is, determine whether weights x_1 and x_2 exist such that

$$x_1 a_1 + x_2 a_2 = b$$

Example

Let
$$a_1 = \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix}$$
, $a_2 = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$ and $b = \begin{bmatrix} 7 \\ 4 \\ 3 \end{bmatrix}$.

Determine whether b can be generated (or written) as a linear combination of a_1 and a_2 . That is, determine whether weights x_1 and x_2 exist such that

$$x_1 a_1 + x_2 a_2 = b$$

If this vector equation has a solution, find it.

Vector Equation

A vector equation

$$x_1a_1 + x_2a_2 + \dots + x_na_n = b$$

has the same solution set as the linear system whose augmented matrix is

$$\begin{bmatrix} a_1 & a_2 & \cdots & a_n & b \end{bmatrix}$$

Vector Equation

A vector equation

$$x_1a_1 + x_2a_2 + \dots + x_na_n = b$$

has the same solution set as the linear system whose augmented matrix is

$$\begin{bmatrix} a_1 & a_2 & \cdots & a_n & b \end{bmatrix}$$

• In particular, b can be generated by a linear combination of a_1, a_2, \ldots, a_n if and only if there exists a solution to ...

An Important Note

A Key Idea

One of the key ideas in linear algebra is to study the set of all vectors taht can be generated or written as a linear combination of a fixed set $\{v_1, \ldots, v_p\}$ of vectors.

An Important Note

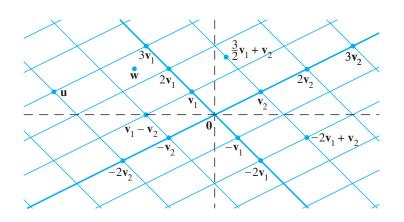
A Key Idea

One of the key ideas in linear algebra is to study the set of all vectors taht can be generated or written as a linear combination of a fixed set $\{v_1,\ldots,v_p\}$ of vectors.

Example

Consider possible linear combinations of $v_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

and
$$v_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$



Span

Definition

If v_1, \ldots, v_p are in \mathbb{R}^n , then the set of all linear combinations of v_1, \ldots, v_p is denoted by $\mathsf{Span}\{v_1, \ldots, v_p\}$ and is called the subset of \mathbb{R}^n spanned (or generated) by $\{v_1, \ldots, v_p\}$.

Span

Definition

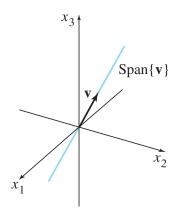
If v_1, \ldots, v_p are in \mathbb{R}^n , then the set of all linear combinations of v_1, \ldots, v_p is denoted by $\text{Span}\{v_1, \ldots, v_p\}$ and is called the subset of \mathbb{R}^n spanned (or generated) by $\{v_1, \ldots, v_p\}$. That is, $\text{Span}\{v_1, \ldots, v_p\}$ is the collection of all vectors that can be written in the form

$$c_1v_1 + c_2v_2 + \dots + c_pv_p$$

with c_1, \ldots, c_p scalars.

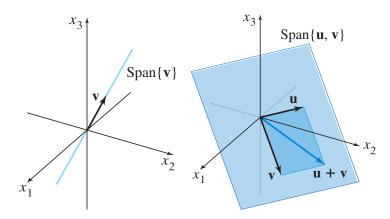
Geometric Description of Span

Geometric Description of Span



(a) $Span\{v\}$ as a line through the origin

Geometric Description of Span



(a) Span $\{v\}$ as a line through (b) Span $\{u,v\}$ as a plane through the origin u,v and the origin

Example

Let
$$a_1 = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$$
, $a_2 = \begin{bmatrix} 5 \\ -13 \\ -3 \end{bmatrix}$ and $b = \begin{bmatrix} -3 \\ 8 \\ 1 \end{bmatrix}$.

Then Span $\{a_1, a_2\}$ is a plane through the origin in \mathbb{R}^3 . Is b in that plane?

In-Class Practice

For what value(s) of h will y be in Span $\{v_1, v_2, v_3\}$ if

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 5 \\ -4 \\ -7 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}, \quad \text{and} \quad \mathbf{y} = \begin{bmatrix} -4 \\ 3 \\ h \end{bmatrix}$$

In-Class Practice

For what value(s) of h will y be in Span $\{v_1, v_2, v_3\}$ if

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 5 \\ -4 \\ -7 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}, \quad \text{and} \quad \mathbf{y} = \begin{bmatrix} -4 \\ 3 \\ h \end{bmatrix}$$

Question

• Geometrically, what is $Span\{v_1, v_2, v_3\}$?

In-Class Practice

For what value(s) of h will y be in Span $\{v_1, v_2, v_3\}$ if

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 5 \\ -4 \\ -7 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}, \quad \text{and} \quad \mathbf{y} = \begin{bmatrix} -4 \\ 3 \\ h \end{bmatrix}$$

Question

- Geometrically, what is $Span\{v_1, v_2, v_3\}$?
- Is $Span\{u, v\}$ always visualized as a plane through the origin.