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Homogeneous Linear Systems

Question: when there exists a nontrivial
solution?

The homogeneous equation Az = 0 has a nontrivial
solution if and only if the equation has at least one
free variable.




Homogeneous Linear Systems

Example

Determine if the following homogeneous system has
“a nontrivial solution. Then describe the solution set.

3 5
-3 2
6 1

-4 0 3
4 0]~
-8 0

3r1 + d5r9 — 4x3
—3x1 — 2x9 +4x3 =0

6$1 + X9 — 8%3

5 4

305 -4 0 3
0 3 0 0f~|0 3 0
0 -9 0 0 o 0 0

wherev:[f‘]—‘
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Homogeneous Linear Systems

Example

A single linear equation can be treated as a very
_simple system of equations. Describe all solutions of
the homogeneous “system”

10331 — 3.’,13'2 — 25[33 =0
X s+ .2x5 s 2x3
X=X | = X3 = X | + 0
— X3 X3 0 X3 —
3 .2
=x| 1 | +x3| O (with x,, x; free)
0 1
f
v
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Parametric Vector Form

The original linear system (equation) — — an
implicit description of the plane

Solving this equation amounts to finding an
explicit description of the plane as the set
spanned by u and v.

It is called a parametric vector equation of the
plane.

r=su+tv (s,teR)

The solution is in parametric vector form.



Nonhomogeneous Linear Systems

Describe all solutions of Az = b, where

3 5 -4 7
A=11-3 -2 4 and b= [—1
6 1 -8 —4

i 5 -4 7 I 0 —'—‘ -1 x) — :—:1_1':1' =_1
3 -2 4-1|~]0o 1 0 2| * = 2
6 I -8 —4 0o 0 0 0 0 =0
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Nonhomogeneous Linear Systems

~1 4/3
;E|:2]—|—a:3[()] T=p+t /
0 ! (t € R)

Geometric understanding
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Nonhomogeneous Linear Systems

Theorem

Suppose the equation Ax = b is consistent for some
given b, and let p be a solution. Then the solution
set of Ax = b is the set of all vectors of the form

w = p + vy, where vy, is any solution of the
homogeneous equation Ax = 0.
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Writing a solution set in parametric vector form

@ Row reduce the augmented matrix to reduced
echelon form.

Express each basic variable in terms of any free
variables appearing in an equation.

(2

© Wirite a typical solution x as a vector whose
entries depend on the free variables, if any.

()

Decompose x into a linear combination of
vectors using the free variables as parameters.




Exercise

Describe the solutions of the following linear
systems in parametric vector form. And give a
geometric description of the solution set.

I —|—3$2 +$3 =0
—45171 —9:62 —|—2IE3 =0
) —6$3 =0

I +3ZL‘2 +x3 =1
—4x1 —9x9 +2x3
—T9 —6%3 = -3

I
|
—_



An indexed set of vectors {v,...,v,} in R" is said to be linearly independent
if the vector equation

X1V1 + XV + -0+ x,¥, =0

has only the trivial solution. The set {vy,...,V,} is said to be linearly dependent
if there exist weights cy, ..., ¢,, not all zero, such that

civi + Va4 o+ cp¥, =0 (2)

1 4 2
Letvi=|2|.vo=|5|,andvy;=| 1
3 0

Determine if the set {vy, v2, v} is linearly independent.

=2}

1 4 2 0
~ 3.0 )
0o 0o o o0|——> freevariable

1 0o -2 0 X1 —2x3=10
0 1 1 0 x2+ x3=0
o 0 0 0

0=0
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Mark each statement true or false

Every matrix is row equivalent to a unique
matrix in echelon form.

If a system of linear equations has tow different
solutions, it must have infinitely many solutions
If a system of linear equations has nor free
variables, then it has a unique solution.

If matrices A and B are row equivalent, they
have the same reduced echelon form.

If Ais am m x n matrix and the equation
Ax = b is consistent for every b in R™, then A
has m pivot positions.
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