2.1 Matrix Operations

Nooshin Maghsoodi

Noshirvani University

These slides are adapted from Linear Algebra course in UESTC

Outline

- Linear Operations (Sums and Scalar Multiples)
- Matrix Multiplication
- Transpose of a Matrix

An $m \times n$ matrix

An
$$m \times n$$
 matrix $\begin{bmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix} = A$

$$A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$

$$\mathsf{An}\ m \times n\ \mathsf{matrix} \quad \mathsf{Row}\ i \begin{bmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix} = A$$

$$A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$

Diagonal entries

An $m \times n$ matrix $\begin{bmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix} = A$

$$A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$

- Diagonal entries
- Diagonal matrix, square matrix

$$\mathsf{An}\ m \times n\ \mathsf{matrix} \quad \mathsf{Row}\ i \begin{bmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & \cdots & a_{mj} & \cdots & a_{mn} \end{bmatrix} = A$$

$$A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$$

- Diagonal entries
- Diagonal matrix, square matrix
- Zero matrix 0

Two matrices are **equal** if they have the same size and if their corresponding columns are equal.

Sums and Scalar Multiples

If A and B are $m \times n$ matrices, r a scalar

Sum

Two matrices are **equal** if they have the same size and if their corresponding columns are equal.

Sums and Scalar Multiples

If A and B are $m \times n$ matrices, r a scalar

- Sum $A + B = [a_1 + b_1, \cdots, a_n + b_n]$
- Scalar Multiple

Two matrices are **equal** if they have the same size and if their corresponding columns are equal.

Sums and Scalar Multiples

If A and B are $m \times n$ matrices, r a scalar

- Sum $A + B = [a_1 + b_1, \cdots, a_n + b_n]$
- Scalar Multiple $rA = [ra_1, \cdots, ra_n]$

Example

Let

$$A = \begin{bmatrix} 3 & 0 & -2 \\ 1 & 2 & -3 \end{bmatrix} \ B = \begin{bmatrix} -2 & 1 & 3 \\ 0 & -1 & 2 \end{bmatrix} \ C = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$$

Properties of Linear Operations

Theorem

Let A, B and C be matrices of the same size, and let r and s be scalars.

a).
$$A + B = B + A$$
 d). $r(A + B) = rA + rB$
b). $(A + B) + C = A + (B + C)$ e). $(r + s)A = rA + sA$
c). $A + 0 = A$ f). $r(sA) = (rs)A$

Matrix Multiplication

Matrix Multiplication

$$\forall x, A(Bx) = (AB)x$$

Matrix Multiplication

$$\forall x, A(Bx) = (AB)x$$

Definition

If A is an $m \times n$ matrix, and if B is an $n \times p$ matrix with columns b_1, \dots, b_p , then the product AB is the $m \times p$ matrix whose columns are Ab_1, \dots, Ab_p . That is,

Definition

If A is an $m \times n$ matrix, and if B is an $n \times p$ matrix with columns b_1, \dots, b_p , then the product AB is the $m \times p$ matrix whose columns are Ab_1, \dots, Ab_p . That is,

$$AB = A \begin{bmatrix} b_1 & b_2 & \cdots & b_p \end{bmatrix} = \begin{bmatrix} Ab_1 & Ab_2 & \cdots & Ab_p \end{bmatrix}$$

Definition

If A is an $m \times n$ matrix, and if B is an $n \times p$ matrix with columns b_1, \dots, b_p , then the product AB is the $m \times p$ matrix whose columns are Ab_1, \dots, Ab_p . That is,

$$AB = A \begin{bmatrix} b_1 & b_2 & \cdots & b_p \end{bmatrix} = \begin{bmatrix} Ab_1 & Ab_2 & \cdots & Ab_p \end{bmatrix}$$

 Multiplication of matrices corresponds to composition of linear transformations.

Compute
$$AB$$
 , where $A=\begin{bmatrix}2&3\\1&-5\end{bmatrix}$ and

$$B =$$

Compute
$$AB$$
, where $A = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix}$ and

$$B = \begin{bmatrix} 4 & 3 & 6 \\ 1 & -2 & 3 \end{bmatrix}$$

Compute
$$AB$$
, where $A = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix}$ and

$$B = \begin{bmatrix} 4 & 3 & 6 \\ 1 & -2 & 3 \end{bmatrix}$$

$$A\mathbf{b}_1 = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \quad A\mathbf{b}_2 = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix}, \quad A\mathbf{b}_3 = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix}$$

Compute
$$AB$$
, where $A = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix}$ and

$$B = \begin{bmatrix} 4 & 3 & 6 \\ 1 & -2 & 3 \end{bmatrix}$$

$$A\mathbf{b}_{1} = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \quad A\mathbf{b}_{2} = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix}, \quad A\mathbf{b}_{3} = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix}$$
$$= \begin{bmatrix} 11 \\ -1 \end{bmatrix} \qquad = \begin{bmatrix} 0 \\ 13 \end{bmatrix} \qquad = \begin{bmatrix} 21 \\ -9 \end{bmatrix}$$

Compute
$$AB$$
, where $A = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix}$ and

$$B = \begin{bmatrix} 4 & 3 & 6 \\ 1 & -2 & 3 \end{bmatrix}$$

$$A\mathbf{b}_{1} = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \quad A\mathbf{b}_{2} = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix}, \quad A\mathbf{b}_{3} = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix}$$

$$= \begin{bmatrix} 11 \\ -1 \end{bmatrix} \qquad = \begin{bmatrix} 0 \\ 13 \end{bmatrix} \qquad = \begin{bmatrix} 21 \\ -9 \end{bmatrix}$$
Then
$$AB = A[\mathbf{b}_{1} \ \mathbf{b}_{2} \ \mathbf{b}_{3}] = \begin{bmatrix} 11 & 0 & 21 \\ -1 & 13 & -9 \end{bmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

• Each column of AB is a linear combination of the columns of A using weights from the corresponding column of B.

- Each column of AB is a linear combination of the columns of A using weights from the corresponding column of B.
- AB has the same number of rows as A and the same number of columns as B.

If A is a 3×5 matrix and B is a 5×2 matrix, what are the sizes of AB and BA, if they are defined?

Exercise

Calculate AB with

$$A = \begin{bmatrix} 2 & -5 & 0 \\ -1 & 3 & -4 \\ 6 & -8 & -7 \\ -3 & 0 & 9 \end{bmatrix} \quad B = \begin{bmatrix} 4 & -6 \\ 7 & 1 \\ 3 & 2 \end{bmatrix}$$

Exercise

Calculate AB with

$$A = \begin{bmatrix} 2 & -5 & 0 \\ -1 & 3 & -4 \\ 6 & -8 & -7 \\ -3 & 0 & 9 \end{bmatrix} \quad B = \begin{bmatrix} 4 & -6 \\ 7 & 1 \\ 3 & 2 \end{bmatrix}$$

$$row_i(AB) = row_i(A)B$$

- A(B+C) = AB + AC (left distributive law)

- (B+C)A = BA + CA (right distributive law)

- (B+C)A = BA + CA (right distributive law)

- (B+C)A = BA + CA (right distributive law)
- $I_m A = A = A I_N$

Warnings

• In general, $AB \neq BA$.

$\mathsf{Warnings}$

① In general, $AB \neq BA$. If AB = BA, we say they commute with each other.

Warnings

- 1 In general, $AB \neq BA$. If AB = BA, we say they commute with each other.
- ② The cancellation laws do not hold for matrix multiplication. AB = AC does not in general implies B = C.

Warnings

- 1 In general, $AB \neq BA$. If AB = BA, we say they commute with each other.
- ② The cancellation laws do not hold for matrix multiplication. AB = AC does not in general implies B = C.
- AB = 0, you cannot conclude in general that either A = 0 or B = 0.

Powers and Transpose of a Matrix

Powers of a Matrix

If A is a square matrix and if k is a positive integer, then

$$A^k = A \cdots A$$

Powers and Transpose of a Matrix

Powers of a Matrix

If A is a square matrix and if k is a positive integer, then

$$A^k = A \cdots A$$

Transpose of a Matrix

Given an $m \times n$ matrix A, the transpose of A is the $n \times m$ matrix, denoted by A^T , whose columns are formed from the corresponding rows of A.

Write down the transposes of the following matrix.

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} B = \begin{bmatrix} -5 & 2 \\ 1 & -3 \\ 0 & 4 \end{bmatrix} C = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -3 & 5 & -2 & 7 \end{bmatrix}$$

Properties of the Transpose

- $(A^T)^T = A$
- $(A+B)^T = A^T + B^T$
- For any scalar r, $(rA)^T = rA^T$
- $(AB)^T = B^T A^T$

Mark each statement True or False. Justify each answer.

- The second row of AB is the second row of A multiplied on the right by B.
- $\bullet (AB)C = (AC)B$
- $(AB)^T = A^T B^T$
- $A^T + B^T = (A + B)^T$