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@ Linear Operations (Sums and Scalar Multiples)
@ Matrix Multiplication

© Transpose of a Matrix
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@ Diagonal entries

@ Diagonal matrix, square matrix
@ Zero matrix 0



Linear Operations

Two matrices are equal if they have the same size
and if their corresponding columns are equal.

Sums and Scalar Multiples

If A and B are m X n matrices, r a scalar
@ Sum
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Linear Operations

Two matrices are equal if they have the same size
and if their corresponding columns are equal.

Sums and Scalar Multiples

If A and B are m X n matrices, r a scalar
e SumA+B= [a1+b1,--- ,an+bn]
@ Scalar Multiple rA = [ral, e ,ran]




Linear Operations

Let
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Properties of Linear Operations

Let A, B and C be matrices of the same size, and
let » and s be scalars.

a). A+B=B+ A d). r(A+B)=rA+rB

b)).(A+B)+C=A+(B+C) e). (r+s)A=rA+sA
c)A+0=A f). r(sA) = (rs)A




Matrix Multiplication

Multiplication Multiplication
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Matrix Multiplication
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Definition

If Aisan m x n matrix, and if B is an n X p matrix
with columns by, - - , by, then the product AB is
the m X p matrix whose columns are Aby, - - -, Ab,.

That is,
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Definition

If Aisan m x n matrix, and if B is an n X p matrix
with columns by, - - , by, then the product AB is
the m X p matrix whose columns are Aby, - - -, Ab,.

That is,
ABzA[bl by --- bp]:[Abl Aby - Abp}

@ Multiplication of matrices corresponds to
composition of linear transformations.
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Compute AB, where A = [2 2 ] and
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Compute AB, where A = [1 _5] and
4 3 6
5= [1 -2 3]
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Compute AB, where A = [1 _5] and
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Compute AB, where A = [2 2 ] and
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@ Each column of AB is a linear combination of
the columns of A using weights from the
corresponding column of B.



@ Each column of AB is a linear combination of
the columns of A using weights from the
corresponding column of B.

@ AB has the same number of rows as A and the
same number of columns as B.



If Aisa 3 x5 matrix and B is a 5 X 2 matrix, what
are the sizes of AB and BA, if they are defined?

A B AB
k ok ok ok % * ok * ok
ko ok ok X * ok * ok
* k
k%
3x5 5x2 3x2

Match

Size of AB




Exercise

Calculate AB with

R I
A= g 5| B=|7 1
3 2

-3 0 9




Exercise

Calculate AB with
S e T
6 —8 —7 3 9
-3 0 9

row;(AB) = row;(A)B



Properties of Matrix Multiplication

Let A be an m X n matrix, and let B and C have

sizes for which the indicated sums and products are
defined.

Q@ A(BC) = (AB)C (associative law)
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Properties of Matrix Multiplication

Let A be an m X n matrix, and let B and C have

sizes for which the indicated sums and products are
defined.

Q@ A(BC) = (AB)C (associative law)

@ A(B+C)=AB+ AC (left distributive law)
Q@ (B+C)A=BA+CA (right distributive law)
Q@ r(AB)=(rA)B = A(rB)

Q [, A=A=Aly



@ In general, AB#BA.
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© In general, AB#BA. If AB = BA, we say they
commute with each other.

© The cancellation laws do not hold for matrix
multiplication. AB = AC' does not in general implies
B=C.

@ AB =0, you cannot conclude in general that either
A=0or B=0.




Powers and Transpose of a Matrix

Powers of a Matrix
If A is a square matrix and if k is a positive integer,
then

AF = A... A




Powers and Transpose of a Matrix

Powers of a Matrix

If A is a square matrix and if k is a positive integer,
then
AF = A... A

| \

Transpose of a Matrix

Given an m X n matrix A, the transpose of A is the
n X m matrix, denoted by AT whose columns are
formed from the corresponding rows of A.




Write down the transposes of the following matrix.

—5 2
a b 111 1
A:[c d] b= (1) _43 C:[—?, 5 —2 7]




o (AT =A

o (A+ BT =AT + BT

e For any scalar r, (rA)T = rAT
o (AB)T = BT AT




Mark each statement True or False. Justify each
answer.

@ The second row of AB is the second row of A
multiplied on the right by B.

o (AB)C = (AC)B
o (AB)T = ATRT
o AT+ BT = (A+ B)T





