2.2 Inverse of a Matrix

Nooshin Maghsoodi

Noshirvani University

These slides are adapted from Linear Algebra course in UESTC

KO KKOKKEKKEK E DAG

Outline

- **1** Invertible and Inverse
- ² Properties of Inverse
- \bullet An Algorithm for Finding A^{-1}

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

 $CA = I$ and $AC = I$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

$$
CA = I \quad \text{and} \quad AC = I
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 수 있어)

 \bullet In this case, C is an **inverse** of A.

$$
CA = I \quad \text{and} \quad AC = I
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 수 있어)

 \bullet In this case, C is an **inverse** of A. \bullet C is uniquely determined by A.

$$
CA = I \quad \text{and} \quad AC = I
$$

- \bullet In this case, C is an **inverse** of A.
- \bullet C is uniquely determined by A. Inverse is Unique.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

$$
CA = I \quad \text{and} \quad AC = I
$$

KORKARYKERKER OQO

• In this case, C is an **inverse** of A . \bullet C is uniquely determined by A. Inverse is Unique. The inverse of A is denoted by A^{-1} .

$$
CA = I \quad \text{and} \quad AC = I
$$

- In this case, C is an **inverse** of A .
- \bullet C is uniquely determined by A. Inverse is Unique. The inverse of A is denoted by A^{-1} .
- \circ Singular matrix not invertible

$$
CA = I \quad \text{and} \quad AC = I
$$

- \bullet In this case, C is an **inverse** of A.
- \bullet C is uniquely determined by A. Inverse is Unique. The inverse of A is denoted by A^{-1} .

KORKAR KERKER E VOOR

- \circ Singular matrix not invertible
- **Nonsingular matrix** invertible

Inverse – An Example

Example

If
$$
A = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix}
$$
 and $C = \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix}$,

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

Inverse – An Example

Example

If
$$
A = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix}
$$
 and $C = \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix}$, then we can
verify that $AC =$

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

Inverse – An Example

Example

If
$$
A = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix}
$$
 and $C = \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix}$, then we can
verify that $AC =$
 $CA =$

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

Inverses of 2×2 Matrices

Let
$$
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}
$$
. If $ad - bc \neq 0$ (determinant), then
A is invertible and

$$
A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Inverses of 2×2 Matrices

Let
$$
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}
$$
. If $ad - bc \neq 0$ (determinant), then
A is invertible and

$$
A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Find the inverse of $A =$ $\begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$

Solution to Linear Systems

If A is an invertible $n \times n$ matrix, then for each $b \in R^n$, the equation $Ax = b$ has the unique solution $x = A^{-1}b$.

KORKARYKERKER OQO

Solution to Linear Systems

If A is an invertible $n \times n$ matrix, then for each $b \in R^n$, the equation $Ax = b$ has the unique solution $x = A^{-1}b$.

KORKARYKERKER POLO

Proof:

o Existence

Solution to Linear Systems

If A is an invertible $n \times n$ matrix, then for each $b \in R^n$, the equation $Ax = b$ has the unique solution $x = A^{-1}b$.

KORKARYKERKER POLO

Proof:

- **o** Existence
- **·** Uniqueness

Example

Use the inverse to solve the system

$$
\begin{array}{rcl}\n3x_1 & +4x_2 & = 3 \\
5x_1 & +6x_2 & = 7\n\end{array}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Properties of Inverses

If A is an invertible matrix, then A^{-1} is invertible and

$$
(A^{-1})^{-1} = A
$$

Properties of Inverses

If A is an invertible matrix, then A^{-1} is invertible and

$$
(A^{-1})^{-1} = A
$$

• If A and B are $n \times n$ invertible matrices, then so is AB , and the inverse of AB is the product of the inverses of A and B in the reverse order That is,

$$
(AB)^{-1} = B^{-1}A^{-1}
$$

Properties of Inverses

If A is an invertible matrix, then A^{-1} is invertible and

$$
(A^{-1})^{-1} = A
$$

• If A and B are $n \times n$ invertible matrices, then so is AB , and the inverse of AB is the product of the inverses of A and B in the reverse order That is,

$$
(AB)^{-1} = B^{-1}A^{-1}
$$

If A is an invertible matrix, then so is A^T , and the inverse of A^T is the transpose of $A^{-1}.$ That is,

$$
(A^T)^{-1} = (A^{-1})^T
$$

An **elementary matrix** is one that is obtained by performing a single elementary row operation on an identity matrix.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Elementary Matrices

An **elementary matrix** is one that is obtained by performing a single elementary row operation on an identity matrix.

Example Let $E_1 =$ $\sqrt{ }$ $\overline{}$ 1 0 0 0 1 0 −4 0 1 1 $\Big| \quad E_2 =$ $\sqrt{ }$ \vert 0 1 0 1 0 0 0 0 1 1 $\Big| \quad E_3 =$ $\sqrt{ }$ $\overline{}$ 1 0 0 0 1 0 0 0 5 1 \perp

Elementary Matrices

An **elementary matrix** is one that is obtained by performing a single elementary row operation on an identity matrix.

Example Let $E_1 =$ $\sqrt{ }$ $\overline{}$ 1 0 0 0 1 0 −4 0 1 1 $\Big| \quad E_2 =$ $\sqrt{ }$ \vert 0 1 0 1 0 0 0 0 1 1 $\Big| \quad E_3 =$ $\sqrt{ }$ $\overline{}$ 1 0 0 0 1 0 0 0 5 1 \perp $A =$ $\sqrt{ }$ $\overline{1}$ $a \quad b \quad c$ d e f g h i 1 \perp Compute E_1A , E_2A and E_3A

Observations

• If an elementary row operation is performed on an $m \times n$ matrix A, the resulting matrix can be written as EA , where the $m \times m$ matrix E is created by performing the same row operation on I_m .

$$
E_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}, E_{2} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_{3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}
$$

$$
A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}
$$

$$
E_{1}A = \begin{bmatrix} a & b & c \\ d & e & f \\ g - 4a & h - 4b & i - 4c \\ g - 4a & h - 4b & i - 4c \end{bmatrix}, E_{2}A = \begin{bmatrix} d & e & f \\ a & b & c \\ g & h & i \end{bmatrix}, E_{3}A = \begin{bmatrix} d & e & f \\ a & e & f \\ g & h & i \end{bmatrix}, E_{4} = \begin{bmatrix} d & e & f \\ g & e & f \\ g & h & i \end{bmatrix}, E_{5} = \begin{bmatrix} d & e & f \\ g & e & f \\ g & h & i \end{bmatrix}
$$

Observations

- **•** If an elementary row operation is performed on an $m \times n$ matrix A, the resulting matrix can be written as EA , where the $m \times m$ matrix E is created by performing the same row operation on I_m .
- Each elementary matrix E is invertible. The inverse of E is the elementary matrix of the same type that transforms E back into I .

KORKARYKERKER POLO

Example

Find the inverse of
$$
E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . ⊙ Q Q ^

Example

Find the inverse of
$$
E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -4 & 0 & 1 \end{bmatrix}
$$

Solution To transform E_1 into I, add $+4$ times row 1 to row 3. The elementary matrix that does this is

$$
E_1^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ +4 & 0 & 1 \end{bmatrix}
$$

KORK EXTERNE PROVIDE

Theorem

An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n ,

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 →) 익 Q Q

Theorem

An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n , and in this case, any sequence of elementary row operations that reduces A to I_n also transforms I_n into $A^{-1}.$

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

 2990

An Algorithm for Finding A^{-1}

Algorithm for Finding A^{-1}

Row reduce the augmented matrix $[A \ I]$. If A is row equivalent to I, then $[A \, I]$ is row equivalent to $[I \ A^{-1}]$. Otherwise, A does not have an inverse.

K ロ X K 레 X K 할 X K 할 X 및 할 X 이익(N

Example

Find the inverse of the matrix $A =$

$$
\begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

$$
\begin{bmatrix} A & I \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 3 & 0 & 1 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & -3 & -4 & 0 & -4 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 3 & -4 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3/2 & -2 & 1/2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

Suppose B, C are invertible, solve X in terms of A, B, C, D

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

$$
\bullet\ BXC = A
$$

$$
\bullet \ \ B(A + X)C = D
$$

Let A be an invertible $n \times n$ matrix, and let B be an $n \times p$ matrix. Explain why $A^{-1}B$ can be computed by row reduction:

If $[A \ B] \sim \cdots \sim [I \ X],$ then $X = A^{-1}B$

KORKARYKERKER POLO