Computer Networks

Chapter 3: Transport Layer

Chapter 3: Transport Layer

our goals:
<+ understand + learn about Internet
principles behind transport layer protocols:
transport layer = UDP: connectionless
services: transport
* multiplexing, = TCP: connection-oriented
demultiplexing reliable transport
" reliable data transfer = TCP congestion control

* flow control
" congestion control

Transport Layer 3-2

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-3

Transport services and protocols

appllcatlon
Plaaniy ‘

transport
networ
data link rosesro
phy5|cal

n

E

<« provide logical communication
between app processes
running on different hosts

transport protocols run in
end systems

" send side: breaks app
messages into segments,
passes to network layer

" rcv side: reassembles _
segments into messages, transport

networ

passes to app layer , data Ik

phy5|cal
% more than one transport
protocol available to apps

= Internet;: TCP and UDP

3

K/
0’0

Transport Layer 3-4

Transport vs. network layer

+ network layer: logical
communication
between hosts

< transport layer:
logical
communication
between processes
" relies on, enhances,

network layer
services

- household analogy:

|2 kids in Ann s house sending
letters to |2 kids in Bill s
house:

» hosts = houses
» processes = kids

% app messages = letters in
envelopes

+ transport protocol = Ann
and Bill who demux to in-
house siblings

» network-layer protocol =

postal service

Transport Layer 3-5

Internet transport-layer protocols

+ reliable, in-order
delivery (TCP)
= congestion control
= flow control
" connection setup

< unreliable, unordered

delivery: UDP

= no-frills extension of
“best-effort” IP

<+ services not available:
= delay guarantees
" bandwidth guarantees

<& 7

application
DO

net

e
data li
hysi
, PyeE network
netw data link
data l[inR(e, hysical ——
physical O
ork a
k
Qf'—\';y,-\- p (/
& q network |4
G5 e data link O
%@7 physical A
|__networkN[®,
data link
shysical

network

data link

physical

“ network
data link
o physical
4 \ 2
% 3

a

ation
d o]0,
networ
data link
physical

Transport Layer 3-6

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-7

Multiplexing/demultiplexing

- multiplexing at sender:
handle data trom mulitiple
sockets, add transport header
(later used for demultiplexing)

— demultiplexing at receiver: —
use header info to deliver
received segments to correct
socket

application
application
\
transport network
network it

link physi¢al
N/ _

physical

application |:| socket
Q process
trar{dport
network
[{mk D
physical

Transport Layer 3-8

How demultiplexing works

+ host receives |IP datagrams

= each datagram has source IP
address, destination IP
address

" each datagram carries one
transport-layer segment

= each segment has source,
destination port number
+ host uses IP addresses &
bort numbers to direct
segment to appropriate
socket

32 bits

source port # | dest port #

other header fields

application
data

(payload)

TCP/UDP segment format

Transport Layer 3-9

Connectionless demultiplexing

< recall: created socket has + recall: when creating
host-local port #: datagram to send into
DatagramSocket mySocketl UDP socket, must specify
= new DatagramSocket (12534); o
" destination |IP address

" destination port #

« when host receives UDP IP datagrams with same
segment: dest. port #, but different

" checks destination port # — ;ﬁz/rf,? lijgcderisci‘ets

in seement : .
. 8 numbers will be directed
" directs UDP segment to to same socket at dest
socket with that port #

Transport Layer 3-10

Connectionless demux: example

DatagramSocket
serverSocket = new
DatagramSocket DatagramSocket DatagramSocket
mySocket2 = new g mySocketl = new
DatagramSocket (6428) ; DatagramSocket
(9157) ; application (5773) ;
application application
re
‘ tramsport o[, al
trangport neivx10'k trangport
nefwork | n|< network
link plh‘/sical link
./ hdical hypical \
physica pny \
= — =X
source port: 6428 source port: ?
. dest port: 9157] dest port: ?
> le v
source port: 9157 source port: ?
dest port: 6428 dest port: ?

Transport Layer 3-11

Connection-oriented demux

+» TCP socket identified
by 4-tuple:
" source IP address
" source port number
" dest |IP address
" dest port number

+ demux: receiver uses
all four values to direct
segment to appropriate
socket

% server host may support
many simultaneous TCP
sockets:

= each socket identified by
its own 4-tuple

< web servers have
different sockets for
each connecting client

" non-persistent HT TP will
have different socket for
each request

Transport Layer 3-12

Connection-oriented demux: examEIe

application
application - - - application
N ansport _Ijr
tranpport Hetwlork ransport
netyork lidk network
lihk)hysical link
:" ‘f phykical gl server: [P physical E' \
e address B o
host: IP source IP,port: B,80 + host: IP
address A dest IPport: A,9157 source IP,port: C,5775 address C
DS dest IP,port: B,80
source IP,port: A,9157 -
dest IF, port: B,80_ source IP,port: C,9157

dest IP,port: B,80

three segments, all destined to IP address: B,

dest port: 80 are demultiplexed to different sockets Transport Layer 3-13

Connection-oriented demux: examEIe

threaded server

application

application

application

tranpport _Ijmansport
netyvork network
link link
:" ‘f phykical gl server: [P physical E' \
e — address B i
host: IP source IP,port: B,80 + host: IP
address A dest IPport: A,9157 source IP,port: C,5775 address C
- dest IP,port: B,80
source IP,port: A,9157 -
dest IP, port: B,80
Por source IP,port: C,9157

dest IP,port: B,80

Transport Layer 3-14

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-15

UDP: User Datagram Protocol [RFC 768]

% “nofrills,” “bare bones” «» UDP use:
Internet transport = streaming multimedia
protocol apps (loss tolerant, rate
+ “best effort” service, sensitive)
UDP segments may be: = DNS
" |ost = SNMP
" delivered out-of-order + reliable transfer over
to app UDP:

< connectionless:

" no handshaking
between UDP sender,
receiver

" each UDP segment
handled independently
of others

= add reliability at
application layer

= application-specific error
recovery!

Transport Layer 3-16

UDP: segment header

length, in bytes of
UDP segment,
including header

32 bits

source port #

~

length <~ | checksum

— why is there a UDP? __

% NO conhnhection

application establishment (which can
data add delay)
(payload)

<+ simple: no connection
state at sender, receiver

< small header size

% Nno congestion control:
UDP can blast away as
fast as desired

UDP segment format

Transport Layer 3-17

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

sender: receiver:

% treat segment contents, » compute checksum of
including header fields, received segment
as sequence of 16-bit

+ check if computed

integers
) gk - addi checksum equals checksum
> checksum: addition field value:

(one’ s complement

sum) of segment * NO - error detected

contents = YES - no error detected.
» sender puts checksum But maybe errors
value into UDP nonetheless? More later

checksum field

Transport Layer 3-18

Internet checksum: example

example: add two | 6-bit integers

6-
11100110011 00110
1101010101 O01O01O01

wr'apar'ound@IOI1101110111011

sum

1011101110111 100
checksum 0100010001 00O0OO011

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

Transport Layer 3-19

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-20

Principles of reliable data transfer

% important in application, transport, link layers
= top-10 list of important networking topics!

sending receiver I
process I process
| 1
reliable chcnrmel)j

application
layer

fransport
layer

() provided service

+ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-21

Principles of reliable data transfer

% important in application, transport, link layers
= top-10 list of important networking topics!

sending receiver I
process I process
| 1
reliable chcnrmel)j

application
layer

fransport
layer

Junreliable Chonnel)i

(a) provided service (b) service implementation

+ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-22

Principles of reliable data transfer

% important in application, transport, link layers
= top-10 list of important networking topics!

senalngl receiver I
process process
! f

. rdt send()
reliable chcnrmel)j —

application
layer

deliver data()

=

8_ 5 reliable data reliable data

B > transfer protocol transfer protocol

% O (sending side) (receiving side)

+ udt_send()i [packet | [packet] Irdt rev()

Junreliable Chonnel)i

(a) provided service (b) service implementation

+ characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-23

Reliable data transfer: getting started

rdt send() : called from above,

(e.g., by app.). Passed data to
deliver to receiver upper layer

rdt_ send()

reliable data
fransfer protocol
(sending side)

send
side

deliver data () : called by
rdt to deliver data to upper

_/

data Tdeliver_data ()

reliable data receive
fransfer protocol .
(receiving side) side

udt_send ()} [pockel

packet Irdt_rcv ()

T—»()unrelicible channel)J

udt send () : called by rdt,

to transfer packet over
unreliable channel to receiver

rdt rcv () : called when packet
arrives on rcv-side of channel

Transport Layer 3-24

Reliable data transfer: getting started

’

we |l

+ incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

<+ consider only unidirectional data transfer
= but control info will flow on both directions!

+ use finite state machines (FSM) to specify sender,

receiver

event causing state transition
actions taken on state transition

state: when in this
“state” next state
uniquely determined
by next event

|

Transport Layer 3-25

rdtl.0: reliable transfer over a reliable channel
+ underlying channel perfectly reliable

" no bit errors

" no loss of packets
+ separate FSMs for sender, receiver:

= sender sends data into underlying channel

" receiver reads data from underlying channel

Wait for
call from
above

rdt_send(data) “Aait for

call from
below

rdt_rcv(packet)

extract (packet,data)

packet = make_pkt(data) deliver_data(data)

udt_send(packet)

sender receiver

Transport Layer 3-26

rdt2.0: channel with bit errors

% underlying channel may flip bits in packet
= checksum to detect bit errors

< the question: how to recover from errors:

»

How do humans recover from ‘errors
during conversation?

Transport Layer 3-27

rdt2.0: channel with bit errors

% underlying channel may flip bits in packet
= checksum to detect bit errors

< the question: how to recover from errors:

= acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

= negative acknowledgements (NAKs): receiver explicitly tells
sender that pkt had errors

= sender retransmits pkt on receipt of NAK
% new mechanisms in rdt2.0 (beyond rdt1.0):

" error detection

= feedback: control msgs (ACK,NAK) from receiver to
sender

Transport Layer 3-28

rdt2.0: FSM specification

rdt_send(data)

sndpkt = make_pkt(data, checksum) receiver
udt_send(sndpkt)
rdt_rcv(rcvpkt) &&

ISNAK (rcvpkt)

Wait for
call from
above

rdt_rcv(rcvpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

sender

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

Transport Layer 3-29

rdt2.0: operation with no errors

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt

rdt_rcv(rcvpkt) &&
ISNAK (rcvpkt)

Wait for
call from
above

rdt_rcv(rcvpkt) &&
udt send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
3
A

rdt rcv(rcvka &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-30

rdt2.0: error scenario

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt)

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

dt send(NAK

call from
above

rdt_rcv(rcvpkt) && isACK(rcvpkt)
<
A

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)

deliver_data(data)
udt_send(ACK)

Transport Layer 3-31

rdt2.0 has a fatal flaw!

what happens if handling duplicates:

ACK/NAK corrupted!?

+ sender doesn’ t know
what happened at
receiver!

% can’ t just retransmit:
possible duplicate

— stop and wait

response

sender sends one packet,
then waits for receiver

» sender retransmits

current pkt if ACK/NAK
corrupted

<+ sender adds sequence

number to each pkt

» receiver discards (doesn’ t

deliver up) duplicate pkt

Transport Layer 3-32

rdt2.1: sender, handles garbled ACK/NAKSs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISNAK(rcvpkt))

udt_send(sndpkt)

Wait for
ACK or
NAK O

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsSACK(rcvpkt)

A A
Wait for Wait for
ACK or
rdt_rcv(rcvpkt) && NAK 1
(corrupt(rcvpkt) ||
iSNAK (rcvpkt)) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

Transport Layer 3-33

rdt2.1: receiver, handles garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

\
\

rdt_rcv(rcvpkt) && (corrupt(rcvpkt) \\

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum) \

udt_send(sndpkt) Q

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && (
has_seql(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has_seqO(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Transport Layer 3-34

rdt2.l: discussion

sender: receiver:
% seq # added to pkt + must check if received
+ two seq. # s (0,1) will packet is duplicate
suffice. Why? " state indicates whether
: : 0 or | is expected pkt
« must check if received seq #
ACK/NAK corrupted .
. % Nnote: receiver can not
% twice as many states know if its last
" state must | ACK/NAK received
remember whether OK at sender

“expected’ pkt should
have seq # of 0 or |

Transport Layer 3-35

rdt2.2: a NAK-free protocol

+ same functionality as rdt2.l, using ACKs only

+ instead of NAK, receiver sends ACK for last pkt
received OK

" receiver must explicitly include seq # of pkt being ACKed

<+ duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 3-36

rdt2.2: sender, receiver fragments

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt) rdt_rcv(rcvpkt) &&

S —_ Y
S ait for (_corrupt(rcvpkt) |
....................... call 0 from ACK e —
..................................... above 0 udt_send(sndpkt)
... sender FSM

... fragment rdt_rcv(rcvpkt)
...................................... && notcorrupt(rcvpkt)
wrotengse T && IsACK(rcvpkt,0)

(Corrupt(rcvpkt) ” A
has_seql(rcvpkt)) recelver FSM ..

JET— fragment

— — T

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) e
&& has_seql(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)

udt_send(sndpkt) Transport Layer 3-37

rdt3.0: channels with errors and loss

new assumption:
underlying channel can

also lose packets
(data, ACKs)

" checksum, seq. #,
ACKSs, retransmissions
will be of help ... but
not enough

approach: sender waits

“reasonable” amount of
time for ACK

< retransmits if no ACK

received in this time

+ if pkt (or ACK) just delayed

(not lost):

" retransmission will be
duplicate, but seq. # s
already handles this

" receiver must specify seq
of pkt being ACKed

% requires countdown timer

Transport Layer 3-38

rdt3.0 sender

rdt_send(data)

rdt_rcv(rcvpkt) &&

\ sndpkt = make_pkt(0, data, checksum)
\ udt_send(sndpkt)
\ start_timer

rdt_rcv(rcvpkt)
A

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,1)

stop_timer

timeout
udt_send(sndpkt) C
start_timer (/

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISACK(rcvpkt,0))

A

Wait for
call Ofrom
above

(corrupt(rcvpkt) ||
ISACK(rcvpkt,1))
A

timeout
udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsSACK(rcvpkt,0)

stop_timer

Wait for
call 1 from
above

rdt_rcv(rcvpkt)
A

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

Transport Layer 3-39

rdt3.0 in action

sender receiver
send pkt0 ktO
\\ Frcv pkto
ack send ackO
rcv ackO
send pktl \K
rcv pktl
A}k/ send ackl
rcv ackl
send pkt0 \NO\‘
rcv pktO
ack send ackO
(a) no loss

sender
send pktO

rcv ackO
send pktl_

receliver

ktO
\\ rcv pkt0

ack send ackO

fé

timeout_
resend pktl

rcv ackl
send pkt0

/

ktl

/

rcv pktl
ck send ackl

ktO

\i

rcv pkt0
ack send ackO

(b) packet loss

Transport Layer 3-40

rdt3.0 in action

sender receiver

send pktO ktO

/

rcv pktO
a send ackO

Kt1

%

rcv ackO .
send pkt1 _

/

rcv pkiti

ack1
X send ack1

i loss
@ timeout

resend pkt1

\

rcv pkti
(detect duplicate)

\%

/ N
y send ack

rcv ackl .

send pkt0 \Q&
» rcv pktO
~_ackh—"send ack0
P

(c) ACK loss

sender receiver

send pktO ktO

/

, rev pkt0

ac send ackO
rcv ackO A)ﬂ/
send pkt1 _ ki

/

» rcv pkt1
send acki
- ack1

timeout

resend pkt1

ki1 rcv pkt1

A

rcv ack > (detect duplicate)
send pktO ack:(to send acki
rcv ackl < rcv pkto

do nothing ack send ack0

(d) premature timeout / delayed ACK

Transport Layer 3-41

Performance of rdt3.0

% rdt3.0 is correct, but performance stinks
+» e.g.: | Gbps link, |5 ms prop. delay, 8000 bit packet:

8000 bits

L .
= — = ; = 8 microsecs
Dirans = R 1P bits/sec
= U 4o utilization — fraction of time sender busy sending
L/R .008
u_ = 2% = 0.00027

sender BTT + /R ~ 30.008

* if RTT=30 msec, | KB pkt every 30 msec: 33kB/sec thruput
over | Gbps link

% network protocol limits use of physical resources!

Transport Layer 3-42

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t =0

last packet bit transmitted, t = L / R £

first packet bit arrives

RTT —last packet bit arrives, send ACK

ACK arrives, send next]
packet, t = RTT + L/ R [~
.

U L/R .008

sender = ———T = ooos - 0.00027

Transport Layer 3-43

Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-
to-be-acknowledged pkts
" range of sequence numbers must be increased
= buffering at sender and/or receiver

data pc:cke’r—»

data packets—» ‘p

<+— ACK packets

(a) a stop-and-wait protocol in operation {b) a pipelined protocol in operation

% two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-44

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 —fx-- - -
last bit transmitted, t =L/ R

first packet bit arrives
last packet bit arrives, send ACK

> last bit of 2nd packet arrives, send ACK
—last bit of 31 packet arrives, send ACK

RTT

ACK arrives, send next]
packet, t=RTT+L/R

- 3-packet pipelining increases
""""""""""" utilization by a factor of 3!

v
3L/ R .0024 '/
sender = ——T 30008 0.00081

U

Transport Layer 3-45

Pipelined protocols: overview

Go-back-N:

<+ sender can have up to
N unacked packets in
pipeline

% receiver only sends
cumulative ack

= doesn’ t ack packet if
there’ s a gap

< sender has timer for
oldest unacked packet

= when timer expires,
retransmit all unacked
packets

Selective Repeat:

+ sender can have up to N
unack ed packets in
pipeline

< rcvr sends individual ack
for each packet

< sender maintains timer
for each unacked packet

" when timer expires,
retransmit only that
unacked packet

Transport Layer 3-46

Go-Back-N: sender

+ k-bit seq # in pkt header
= “window of up to N, consecutive unack ed pkts allowed

send_base hextsegnum dlready Usable. ho
L i ack’ed vet sent
JOOIRE L LTRELO0000I | semtogtae [otusam
t __ window size—%
N

« ACK(n):ACKs all pkts up to, including seq # n - “cumulative
ACK~

" may receive duplicate ACKs (see receiver)

+ timer for oldest in-flight pkt

+ timeout(n): retransmit packet n and all higher seq # pkts in
window

Transport Layer 3-47

GBN: sender extended FSM

rdt_send(data)

if (nextsegnum < base+N) {
sndpkt[nextsegnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextsegnuml])
if (base == nextsegnum)
start_timer
nextsegnum-++
~~~~~ }
A else
refuse_data(data)

base=1 -,
nextsegnum=1l . C )
anum==2-— e . timeout
start_timer
udt_send(sndpkt[base])
rdt_rcv(rcvpkt) C‘ udt_send(sndpkt[base+1])

&& corrupt(rcvpkt)

udt_send(sndpkt[nextsegnum-1])
rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)
stop_timer
else

start_timer
- Transport Layer 3-48



GBN: receiver extended FSM

default
udt_send(sndpkt) rdt_rev(revpkt)
T~ < D && notcurrupt(rcvpkt)

A T~ ~o - o && hassegnum(rcvpkt,expectedsegnum)
=~ >

expectedseqnum=1 AQextract(rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedseqnum,ACK,chksum) sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedsegnum++

ACK-only: always send ACK for correctly-received
pkt with highest in-order seq #

" may generate duplicate ACKs

" need only remember expectedseqnum
% out-of-order pkt:

= discard (don’ t buffer): no receiver buffering!

" re-ACK pkt with highest in-order seq #

Transport Layer 3-49



GBN in action

sender window (N=4) sender receiver
W}/ 5678 send pkt0
£}, 5678 send pktl \ :

212 6 7g send Ektz- receive pkt0, send ack0

FWE): 56738 send pkt3 \Xloss receive pktl, send ackl
(wait) receive pkt3, discard,

ofEEEE 678 rcv ack0, send pkt4 (re)send ackl

0 1pEKEEY6 78 rcv ackl, send pkt5 receive pkt4, discard,

(re)send ackl
receive pkt5, discard,

(re)send ackl

ignore duplicate ACK

Pkt 2 timeout _

0 1 EEEY6 7 8 send pkt2
12 3 45 WA send pkt3 \ _
W2 3 45 W& send pkt4 rcv pkt2, deliver, send ack2

W2 3 45 Wi send pkt5 rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

Transport Layer 3-50



Selective repeat

+ receiver individually acknowledges all correctly
received pkts

= buffers pkts, as needed, for eventual in-order delivery
to upper layer

+ sender only resends pkts for which ACK not
received

* sender timer for each unACKed pkt

< sender window

= N consecutive seq # s
* limits seq #s of sent, unACKed pkts

Transport Layer 3-51



Selective repeat: sender, receiver windows

send_base  nexfsegnum dlready Usable. not
' ack’ed yet sent
LTI | sz [ oo
* __ window size —4
N

(a) sender view of sequence numlbers

acceptable
(buffered) but R (\ithin window)
already ack’ed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂlllllllllIIIIIIIIIII |opectes ner [ rereseer

t _ window size_4

1 N

rcv_base

I out of order

(b) receiver view of sequence numbers

Transport Layer 3-52



Selective repeat

— sender

data from above:

+ if next available seq # in
window, send pkt

timeout(n):

% resend pkt n, restart
timer

ACK(n) in [sendbase,sendbase+N]:
<+ mark pkt n as received

+ if n smallest unACKed
pkt, advance window base
to next unACKed seq #

— receiver

Pl(t nin [rcvbase, rcvbase+N-1]
+ send ACK(n)
<+ out-of-order: buffer

» in-order: deliver (also

deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

Pl(t N 1IN [rcvbase-N,revbase-1]
+» ACK(n)

otherwise:

% ignore

Transport Layer 3-53




Selective repeat in action

sender window (N=4) sender receiver
k) 5678 send pkt0
K} 5678 send pktl \ ,
kt0, send ackO
012 3 IARA send pkt2- receive pxty,
ERE): 5678 send pkt3 \X/oss receive pktl, send ackl
] wait
(wait) receive pkt3, buffer,
oMEEX¥ 678 rcv ack0, send pkt4 send ack3
0 1EKEE¥ 78 rcv ackl, send pkt5 receive pkt4, buffer,
send ack4
_record ack3 artived receive pkt5, buffer,
pkt 2 timeout send ack>
0 1EEEYF6 7 8 send pkt2
N2 345 Sl record ack4 arrived _
Ollzsasp /8 record ack5 arrived I‘C|2/ 3pkt2k, dehl\!er_ pktZé K2
0 1PIREENG 7 8 pkt3, pkt4, pkt5; send ac

Q. what happens when ack2 arrives?

Transport Layer 3-54



sender window receiver window

Selective repeat:  (ferreceipy (after receipt

dilemma 012 DKO
3012% ofEE]o 1 2
s 012 —_pkt2 — 01EEN1 2
example: 7 — 01 2EF2
o012 T

»
se.q# S: Q, l, 2,3 Jgpenity
< window size=3 pktO

—— will accept packet

] with seq number 0
& receiver sees no (a) no problem

difference in two receiver can’t see sena’er side.
scenarios! receiver behavior identical in both cases’

. something’s (very) wrong!
<+ duplicate data g (very) wrong

accepted as new in 012 —0kO
(b) 012 —RKkt1 o]0 12
[F¥)3012 _pkt2 1 2 3 0 [
‘?‘ 0 1 2EXH2

Q: what relationship e
between seq # size timeout N [
) . retransmlt pkt0
and window size to [EE:012 —0okO

will accept packet
with seq number 0

. . ?
avoid problem in (b)! (b) 0ops!

Transport Layer 3-55



Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-56



TC P: Ove rVieW RFCs: 793,1122,1323, 2018, 258

% point-to-point:
® one sender, one receiver
<+ reliable, in-order byte
steam:

" no “message
. »
boundaries

<+ pipelined:
= TCP congestion and

flow control set window
size

< full duplex data:

» bi-directional data flow
In same connection

= MSS: maximum segment
size
< connection-oriented:

* handshaking (exchange
of control msgs) inits
sender, receiver state
before data exchange

< flow controlled:

= sender will not
overwhelm receiver

Transport Layer 3-57



TCP sesment structure

« 32 hits

URG: urgent data
(generally not used)\

source port # dest port #

ACK: ACK #

. Sequence number

valid

\elqlowledgement number

PSH: push data now
(generally not used) —|

head
len US;C, ‘EAP RIS|F| receive window
7
Urg data pointer

RST, SYN, aN—T
connection estab

op/{ s (variable length)

(setup, teardown
commands)

Internet /

checksum
(as in UDP)

/ application

data
(variable length)

counting

by bytes

of data

(not segments!)

# bytes
rcvr willing
to accept

Transport Layer 3-58



TCP seq. numbers, ACKs

outgoing segment from sender

sequence numbers° source port # dest port #
sequence number
" b)’te stream number of acknowledgement number
first byte in segment’s || | rwnd
checksum urg pointer
data
wmdow Size
acknowledgements: N

"seq # of next byte
expected from other side

= cumulative ACK

Q: how receiver handles
out-of-order segments

= A: TCP spec doesn’ t say,
- up to implementor

sender sequence number space

sent sent, not- usable not
ACKed yet ACKed butnot usable
(“in- yet sent
flight”)

incoming segment to sender
dest port #

sequence number

R acknowledgement number

source port #

A

rwnd

checksum

urg pointer

Transport Layer 3-59



TCP seq. numbers, ACKs

Host A Host B
™ \
User &
types
‘C; \

host ACKs
receipt
of echoed
‘C’

Seq=42, ACK=79, d,JcaK‘C”

Seq=79, ACK=43, data= ‘C’

\

Seq=43, ACsz

simple telnet scenario

host ACKs
receipt of

‘C’, echoes
back ‘C

Transport Layer 3-60



TCP round trip time, timeout

Q: how to set TCP Q_ how to estimate RTT?

timeout value! +» SampleRTT: measured
. time from segment
« longer than RTT transmission until ACK
= but RTT varies receipt
< too short: premature " jgnore retransmissions
timeout, unnecessary ~ + SampleRTT will vary, want
retransmissions estimated RTT “smoother

. t00 long: sl : " average several recent
*+ 100 long: slow reaction measurements, not just

to segment loss current SampleRTT

Transport Layer 3-61



TCP round trip time, timeout

EstimatedRTT = (1- o) *EstimatedRTT + o*SampleRTT

+» exponential weighted moving average
+ influence of past sample decreases exponentially fast
+ typical value:a =0.125

RTT (milliseconds)

350 +

300

250

200 +

150

100

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

& sampleRTT

EstimatedRTT

1

8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconds) Transport Layer 3-62



TCP round trip time, timeout

+ timeout interval: EstimatedRTT plus “safety margin”
" large variation in EstimatedRTT -> larger safety margin

» estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-B)*DevRTT +
f*|SampleRTT-EstimatedRTT |

(typically, B = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

Transport Layer 3-63



Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-64



TCP reliable data transfer

< T CP creates rdt service
” .
on top of IP" s unreliable
service

* pipelined segments . .
= cumulative acks let s initially consider

 single retransmission simplified TCP sender:
timer " ignore duplicate acks

% retransmissions " ignore flow control,
triggered by: congestion control

" timeout events
" duplicate acks

Transport Layer 3-65



TCP sender events:

data rcvd from app:

% create segment with
seq #

% seq # is byte-stream
number of first data
byte in segment

. start timer if not
already running
= think of timer as for

oldest unacked
segment

= expiration interval:
TimeOutInterval

4

L)

L)

timeout;

% retransmit segment
that caused timeout

<% restart timer
ack revd:

+ if ack acknowledges
previously unacked
segments

= update what is known
to be ACKed

" start timer if there are
still unacked segments

Transport Layer 3-66



TCP sender (simplified)

data received from application above
create segment, seq. #: NextSegNum

pass segment to IP (i.e., “send”)
NextSegNum = NextSegNum + length(data)
if (timer currently not running)
A start timer
NextSeqNum = InitialSegNum
SendBase = InitialSegNum
timeout

retransmit not-yet-acked segment

with smallest seq. #
start timer
ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y

[* SendBase—1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

else stop timer

}

Transport Layer 3-67



TCP: retransmission scenarios

Host A

g

o

le—— timeout —

\
Seq=92, 8 bytes of data

y

Seq=92, 8 bytes of data

/

ACK=100

—

lost ACK scenario

Host B

S

-
ACK=100

Host A

3
3

Hos
\

2

SendBase=92

—— timeout —

SendBase=100
SendBase=120

SendBase=120

/
/

\

V’/

/

Seq=92, 8 bytes of data
Seq=100, 20 bytes of dat

ACK=100
ACK=120

\

Seq=92, 8

bytes of data\

\

ACK=120

premature timeout

Transport Layer 3-68



TCP: retransmission scenarios

Host A Host B

o—— timeout —*

/

Seq=92, 8 bytes of data

/
/

Seq=100, 20 bytes of da

ACK=100
X<
ACK=120

it

\

Seq=120, 15 bytes of data

/

cumulative ACK

Transport Layer 3-69



TCP ACK generation [RFC 1122, RFC 2581]

event at receiver TCP receiver action

arrival of in-order segment with delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

arrival of in-order segment with immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

arrival of out-of-order segment iImmediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-70



TCP fast retransmit

% time-out period often

relatively long: - TCP fast retransmit ——
= long delay before if sender receives 3
resending lost packet ACKSs for same data
+ detect lost segments (“triple duplicate ACKs”),
via duplicate ACKs. resend unacked
= sender often sends segment with smallest
many segments back- seq #
jco-back _ " |ikely that unacked
" if segment is lost, there segment lost, so don’ t
will likely be many wait for timeout
duplicate ACKs.

Transport Layer 3-71



TCP fast retransmit

Host A Host B
'\

— Seq=92, 8 bytes of data

Seq= 100%%
\X

(ACK=1OO

timeout

’ACKZIOO
~Seq=100, 20 bytes of data

A4

v VL
fast retransmit after sender

receipt of triple duplicate ACK

Transport Layer 3-72



Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-73



TCP flow control

application may

ety |

application
process

remove data from
TCP socket buffers ....

I_

application

... Slower than TCP
receiver is delivering —
(sender is sending)

— flow control

N—

TCP socket

receiver buffers
TAY

|

TCP
code

receiver controls sender, so
sender won’ t overflow
receiver’ s buffer by transmitting
too much, too fast

IP
code

|
from sender

I 4
!

receiver protocol stack

Transport Layer 3-74



TCP flow control

/7
0‘0

receiver “advertises’ free
buffer space by including
rwnd value in TCP header
of receiver-to-sender
segments

= RevBuffer size set via

socket options (typical default
is 4096 bytes)

" many operating systems
autoadjust RcvBuffer
sender Iimits amount of
unacked ( in-flight”) data to
receiver’ s rwnd value

guarantees receive buffer
will not overflow

to application process

FI_‘

?
RcvBuffer

T

rwnd

L

buffered data

free buffer space

1

TCP segment payloads

receiver-side buffering

Transport Layer 3-75



Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-76



Connection Management

before exchanging data, sender/receiver “handshake”:

+ agree to establish connection (each knowing the other willing
to establish connection)

<« agree on connection parameters

application application

O
connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

Vf network network
i
R |
Socket clientSocket = Socket connectionSocket =
newSocket ("hostname" , "port welcomeSocket.accept() ;

number") ;

Transport Layer 3-77



Agreeing to establish a connection

2-way handshake:
P Q: will 2-way handshake
Zad always work in
network!?

» variable delays

» retransmitted messages
(e.g. req_conn(x)) due to
message loss

; I + message reordering
choose X |~ o + can t see’ other side
req_conn(>_<L‘
—® ESTAB
acc_conn(x)
ESTAB e—

Transport Layer 3-78



Agreeing to establish a connection

2-way handshake failure scenarios:

N

choose x

retransmit
req_conn(x)

ESTAB

client™
terminates

\req_conn(>_<L‘

R ESTAB

acc_conn(x)

req_conn(x)

\

connection
X completes

server
forgets x

ESTAB

half open connection!

(no client!)

req_conn(x)

g

choose x

retransmit

ESTAB

retransmit

data(x+1) ™\

1
client
terminates

~ 7 x completes

\req_conno_(L’
/

acc_conn(x)

~data(x+ 1)\.'

connection

\
req_conn(x)

data(x+1)

ESTAB

accept
data(x+1)

server
forgets x

ESTAB
accept
data(x+1)

Transport Layer 3-79



TCP 3-way handshake

client state

LISTEN

SYNSENT

v

ESTAB

choose init seq num, x
send TCP SYN msg

received SYNACK(x)
indicates server is live;
send ACK for SYNACK;

this segment may contain

client-to-server data

g
N

4

\

SYNbit=1, Seq=x

P

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

_—
—~—

ACKbit=1, ACKnum=y+1
\

choose init seq num, y
send TCP SYNACK
msg, acking SYN

received ACK(y)
indicates client is live

server state

LISTEN

SYN RCVD

v

ESTAB

Transport Layer 3-80



TCP 3-way handshake: FSM

Socket connectionSocket =
welcomeSocket.accept () ;
A .
Socket clientSocket =
SYN (X) Il newSocket ("hostname" , "port
ulnb " :
SYNACK(seq=y,ACKnum=x+1) number)
create new socket for SYN(seq=x)
communication back to client
| | SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1) ACK(ACKnum=y+1)

A

Transport Layer 3-81



TCP: closing a connection

< client, server each close their side of connection
= send TCP segment with FIN bit = |

+ respond to received FIN with ACK

= on receiving FIN, ACK can be combined with own FIN
<« simultaneous FIN exchanges can be handled

Transport Layer 3-82



TCP: closing a connection

client state
ESTAB
clientSocket.close ()
FIN WAIT 1 can no longer
send but can
receive data
FINVWAIT p) wait for server
n - close
TIMED_ WAIT —~
timed wait
for 2*max
segment lifetime
CLOSED i

g

4

 FiNbit=1
it=1, SEK

/
ACKbit=1; ACKnum=x+1
—

/
A)Nbit= 1, seq=y
\

ACKbit=1; ACKnum=y+1

\

can still
send data

can no longer
send data

server state

ESTAB

CLOSE_WAIT

LAST ACK

CLOSED

Transport Layer 3-83



Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-84



Principles of congestion control

congestion:

» informally: “too many sources sending too much
data too fast for network to handle

< different from flow control!
+ manifestations:
" lost packets (buffer overflow at routers)
" long delays (queueing in router buffers)
< a top-10 problem!

Transport Layer 3-85



C

original data: }‘“in

auses/costs of congestion: scenario

throughput: A

two senders, two \\'

receivers Host A

one router, infinite

unlimited shared

output link buffers

N /
buffers _ s,é .

output link capacity: R
No retransmission

Ain  R/2

< maximum per-connection
throughput: R/2

in

out

A

delay

Ain  R/2

+ large delays as arrival rate, A, ,

approaches capacity

Transport Layer 3-86




Causes/costs of congestion: scenario 2

<« one router, finite buffers

R

» sender retransmission of timed-out packet

= application-layer input = application-layer output: A, =

A

out

= transport-layer input includes retransmissions : A, > A,

A, - original data

O mm

S==== “EEIREEER

finite shared output
link buffers

p]—2

A'.: original data, plus

retransmitted data

Transport Layer 3-87



Causes/costs of congestion: scenario 2

idealization: perfect
knowledge

+ sender sends only when
router buffers available

R/2+

}\‘OU'[

copy

Host B

B — )\, : original data

A'.: original data, plus

retransmitted data

out

free buffer space!
>

S==== “EEIREEER

finite shared output
link buffers

Transport Layer 3-88



Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost,
dropped at router due
to full buffers

+ sender only resends if
packet known to be lost

A, : original data

copy

A',: original data, plus
retransmitted data

no buffer space!

Transport Layer 3-89



Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost,
dropped at router due
to full buffers

+ sender only resends if

}\‘OUI

(=72 [

_______________________

when gending at R/2,
some/packets are
retrapsmissions but
asymptotic goodput
is still R/2 (why?)

packet known to be lost

A, : original data

A',: original data, plus
retransmitted data

free buffer space!

R/2

Transport Layer 3-90



Causes/costs of congestion: scenario 2

Realistic: duplicates

+ packets can be lost, dropped
at router due to full buffers

R/2

ut

+ sender times out prematurely, <
sending two copies, both of
which are delivered

___________________________

when sending at R/2,
some packets are
retransmissions
including duplicated
that are delivered!

R/2

Transport Layer 3-91



Causes/costs of congestion: scenario 2

Realistic: duplicates

=T B —
+ packets can be lost, dropped A
at router due to full buffers 7* 1 whensending atR/2,
. *g' i some pac_:ke_ts are
+ sender times out prematurely, < § _retzagsmlzsmlnst |
. . : including duplicate
Sendmg two C?PIGS’ both of that aregdeli\?ered!
which are delivered % RI2

in

“costs’ of congestion:

= more work (retrans) for given “goodput”
+ unneeded retransmissions: link carries multiple copies of pkt
" decreasing goodput

Transport Layer 3-92



Causes/costs of congestion: scenario 3

Q: what happens as 1, and A,
increase !
ﬂ as red A, increases,all arriving

blue pkts at upper queue are
dropped, blue throughput = 0

< four senders
» multihop paths
< timeout/retransmit

Host A

L A
A, : original data Ut Host B

A'..: original data, plus
retransmitted data

finite shared output
I

k buffers ‘ H

Host D

T —

Transport Layer 3-93



Causes/costs of congestion: scenario 3

C/2

}\“OU'[

/2

13 77 .
another "cost” of congestion:

» when packet dropped, any “upstream
transmission capacity used for that packet was
wasted!

Transport Layer 3-94



AEEroaches towards congestion control

two broad approaches towards congestion control:

__end-end congestion _network-assisted
control: congestion control:
+ no explicit feedback <+ routers provide
from network feedback to end systems
% congestion inferred " single bit indicating
from end-system congestion (SNA,
observed loss, delay DECDbit, TCP/IP ECN,
<+ approach taken by ATM)
TCP = explicit rate for
sender to send at

Transport Layer 3-95



Case study: ATM ABR congestion control

ABR: available bit rate:

(11 . . 13/
» elastic service

» if sender’ s path
“underloaded”:

= sender should use
available bandwidth

» if sender’ s path
congested:

= sender throttled to
minimum guaranteed
rate

RM (resource management)

cells:

+ sent by sender, interspersed

with data cells

+ bits in RM cell set by switches

(“network-assisted *)

= N/ bit: no increase in rate
(mild congestion)

= Cl bit: congestion
indication

< RM cells returned to sender

by receiver, with bits intact

Transport Layer 3-96



Case study: ATM ABR congestion control

I RM cell H data cell

s‘[u ’-/Hﬂlﬂﬂliﬁﬂﬂl “ T
D F R | R I

+ two-byte ER (explicit rate) field in RM cell

" congested switch may lower ER value in cell

= senders’ send rate thus max supportable rate on path
<« EFCI bit in data cells: set to | in congested switch

" if data cell preceding RM cell has EFCI set, receiver sets
Cl bit in returned RM cell

Transport Layer 3-97



Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-98



TCP congestion control: additive increase
multiplicative decrease
< approach: sender increases transmission rate (window

size), probing for usable bandwidth, until loss occurs

" additive increase: increase cwnd by | MSS every
RTT until loss detected

= multiplicative decrease: cut cwnd in half after loss

additively increase window size ...
... until loss occurs (then cut window in half)

J

AIMD saw tooth
behavior: probing
for bandwidth

cwnd: TCP sender
congestion window size
|

time
Transport Layer 3-99



TCP Congestion Control: details

sender sequence number space
¢ cWnd ——p|

last byte J \ L last byte
yet ACKed
(“in—
flight”)

< sender limits transmission:

LastByteSent- < cwnd
LastByteAcked

+» cwnd is dynamic, function
of perceived network
congestion

TCP sending rate:

< roughly: send cwnd
bytes, wait RTT for
ACKS, then send

more bytes

cwnd

rate bytes/sec

22

Transport Layer 3-100



TCP Slow Start

Host B

+ when connection begins, =
Increase rate

exponentially until first T —Slesegmen

loss event:
" initially cwnd = | MSS %’

" double cwnd every RTT

" done by incrementing
cwnd for every ACK Ur segments

received
% summary: initial rate is
slow but ramps up
exponentially fast

daz
>

+«— RTT—

time

Transport Layer 3-101



TCP: detecting, reacting to loss

%+ loss indicated by timeout:
* cwnd set to | MSS;

* window then grows exponentially (as in slow start)
to threshold, then grows linearly

+ loss indicated by 3 duplicate ACKs: TCP RENO

* dup ACKs indicate network capable of delivering
some segments

* cwnd is cut in half window then grows linearly

% TCP Tahoe always sets cwnd to | (timeout or 3
duplicate acks)

Transport Layer 3-102



TCP: switching from slow start to CA

Q: when should the
exponential
increase switch to 4 TCP Reno
linear? 27

A: when cwnd gets
to |/2 of its value
before timeout.

o
l

ssthresh

ssthresh

Congestion window
(in segments)

TCP Tahoe

Implementation: R S S A A A Y A A
+ variable ssthresh Transmission round

<+ on loss event, ssthresh
is set to |/2 of cwnd just
before loss event

Transport Layer 3-103



Summary: TCP Congestion Control

duplicate ACK cwnd = cwnd + MSS = (MSS/cwnd)

dupACKcount++  new ACK dupACKcount = 0
m cwnd = cwnd+MSS transmit new segment(s), as allowed

dupACKcount=0

A transmit new segment(s), as allowed
cwnd =1 MSS
ssthresh = 64 KB cwnd > ssthresh
dupACKcount =0 Y
———————————— -»> g
- (P:;Q\ timeout
‘\\¢ 1)) ssthresh = cwnd/2 _
ZQ </ ownd = 1 MSS duplicate ACK
((%¢)p __timeout dupACKcount = 0 dupACKcount++
<" sSthresh = cwnd/2 4 retransmit missing segment 4
cwnd =1 MSS
dupACKcount =0 fpf‘-\q\ _
retransmit missing segment ((: AT .
timeout % %J)
ssthresh = cwnd/2 '
cwnd =1 New ACK
dupACKcount = 0 cwnd = ssthresh
dupACKcount == retransmit missing segment dupACKcount = 0 dupACKcount ==
ssthresh= cwnd/2 ssthresh= cwnd/2
cwnd = ssthresh + 3 cwnd = ssthresh + 3
retransmit missing segment retransmit missing segment

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

Transport Layer 3-104



TCP throughput

% avg. TCP thruput as function of window size, RTT?
" ignore slow start, assume always data to send

+ W: window Size (measured in bytes) Where loss occurs
= avg. window size (# in-flight bytes) is /4 W
= avg. thruput is 3/4W per RTT

avg TCP thruput = % % bytes/sec

N14%4%4%%

Transport Layer 3-105



7

TCP Futures: TCP over “long, fat pipes

0’0

example: 1500 byte segments, |00ms RTT, want
|0 Gbps throughput

requires W = 83,333 in-flight segments

throughput in terms of segment loss probability, L
[Mathis 1997]:

0’0

0’0

TCP throughput = L.22 " MSS

RTT./L

=¥ to achieve 10 Gbps throughput, need a loss rate of L
=210 — g very small loss rate!

+ new versions of TCP for high-speed

&

Transport Layer 3-106



TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

ENG—

- bottleneck
Q router

TCP connection 2 capacity R

Transport Layer 3-107



Why is TCP fair?

two competing sessions:
+ additive increase gives slope of |, as throughout increases
+ multiplicative decrease decreases throughput proportionally

Connection 2 throughput 0

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 1 throughput R

Transport Layer 3-108



Fairness gmorez

Fairness and UDP

+ multimedia apps often
do not use TCP

= do not want rate
throttled by congestion
control

< instead use UDP;

= send audio/video at
constant rate, tolerate
packet loss

Fairness, parallel TCP
connections

< application can open
multiple parallel
connections between two
hosts

< web browsers do this

% e.g., link of rate R with 9

existing connections:

= new app asks for | TCP, gets rate
R/10

= new app asks for || TCPs, gets R/2

Transport Layer 3-109



Chapter 3: summary

< principles behind
transport layer services:
" multiplexing,
demultiplexing
" reliable data transfer
= flow control
" congestion control

< Instantiation,
implementation in the
Internet
= UDP
= TCP

next:
<+ leaving the
11 77
network “edge
(application,
transport layers)
<+ into the network
11 7
core

Transport Layer 3-110



Acknowledgment

* The copyright of most of the slides are for J.F Kurose and
K.W. Ross

 \We also have borrowed some materials from:

 Hui Zhang, 15-441 Networking, School of computer science,CMU,
Fall 2007





