Computer Networks

Chapter 4: Network Layer

Network layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in every host, router
- router examines header fields in all IP datagrams passing through it

Two key network-layer functions

- forwarding: move packets from router's input to appropriate router output
- routing: determine route taken by packets from source to dest.
 - routing algorithms

analogy:

- routing: process of planning trip from source to dest
- forwarding: process of getting through single interchange

Interplay between routing and forwarding

Connection setup

- 3rd important function in some network architectures:
 - ATM, frame relay, X.25
- before datagrams flow, two end hosts and intervening routers establish virtual connection
 - routers get involved
- network vs transport layer connection service:
 - network: between two hosts (may also involve intervening routers in case of VCs)
 - transport: between two processes

Network service model

Q: What service model for "channel" transporting datagrams from sender to receiver?

example services for individual datagrams:

- guaranteed delivery
- guaranteed delivery with less than 40 msec delay

example services for a flow of datagrams:

- in-order datagram delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in inter-packet spacing

Connection, connection-less service

- * analogous to TCP/UDP connecton-oriented / connectionless transport-layer services, but:
 - service: host-to-host
 - no choice: network provides one or the other
 - implementation: in network core
- datagram network provides network-layer connectionless service
- virtual-circuit network provides network-layer connection service

Virtual circuits: signaling protocols

used to setup, maintain teardown VC
used in ATM, frame-relay, X.25
not used in today's Internet

Datagram networks

- no call setup at network layer
- routers: no state about end-to-end connections
 - no network-level concept of "connection"
- packets forwarded using destination host address

Datagram forwarding table

Datagram forwarding table

Destination Address Range				Link Interface
11001000 through	00010111	00010000	0000000	0
11001000	00010111	00010111	11111111	
11001000 through	00010111	00011000	0000000	1
U U	00010111	00011000	11111111	I
	00010111	00011001	0000000	2
through 11001000	00010111	00011111	11111111	۷
otherwise				3

Q: but what happens if ranges don't divide up so nicely?

Longest prefix matching

- longest prefix matching

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination Address Range				Link interface
11001000	00010111	00010***	*****	0
11001000	00010111	00011000	******	1
11001000	00010111	00011***	******	2
otherwise				3

examples:

DA: 11001000 00010111 00010110 10100001

DA: 11001000 00010111 00011000 10101010

which interface? which interface?

Network Layer 4-12

The Internet network layer

host, router network layer functions:

IP datagram format

IP fragmentation, reassembly

- network links have MTU (max.transfer size) largest possible link-level frame
 - different link types, different MTUs
- large IP datagram divided ("fragmented") within net
 - one datagram becomes several datagrams
 - "reassembled" only at final destination
 - IP header bits used to identify, order related fragments

IP fragmentation, reassembly

example:	lengthIDfragflagoffset=4000=x=0=0
 4000 byte datagram MTU = 1500 bytes 	one large datagram becomes several smaller datagrams
1480 bytes in data field	IengthIDfragflagoffset1=1500=x=1=0
offset = 1480/8	lengthIDfragflagoffset=1500=x=1=185
	length ID fragflag offset =1040 =x =0 =370

IP addressing: introduction

- ✤ IP address: 32-bit identifier for host, router interface
- interface: connection between host/router and physical link
 - router's typically have multiple interfaces
 - host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)
- IP addresses associated with each interface

1

1

IP addressing: introduction

Subnets

*IP address:

- subnet part high order bits
- host part low order bits

*what's a subnet ?

- device interfaces with same subnet part of IP address
- can physically reach each other without intervening router

network consisting of 3 subnets

recipe

- to determine the subnets, detach each interface from its host or router, creating islands of isolated networks
- each isolated network
 is called a subnet

subnet mask: /24

how many?

IP addressing: CIDR

CIDR: Classless InterDomain Routing

- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address

IP addresses: how to get one?

Q: how does *network* get subnet part of IP addr?A: gets allocated portion of its provider ISP's address space

ISP's block	<u>11001000</u>	00010111	00010000	00000000	200.23.16.0/20
Organization 0 Organization 1 Organization 2	<u>11001000</u>	00010111	<u>0001001</u> 0	00000000	200.23.18.0/23
Organization 7	<u>11001000</u>	00010111	<u>0001111</u> 0	00000000	200.23.30.0/23

Hierarchical addressing: route aggregation

hierarchical addressing allows efficient advertisement of routing information:

Hierarchical addressing: more specific routes

ISPs-R-Us has a more specific route to Organization I

IP addresses: how to get one?

Q: How does a host get IP address?

- hard-coded by system admin in a file
 - Windows: control-panel->network->configuration->tcp/ip->properties
 - UNIX: /etc/rc.config
- DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
 - "plug-and-play"

DHCP: Dynamic Host Configuration Protocol

goal: allow host to dynamically obtain its IP address from network server when it joins network

- can renew its lease on address in use
- allows reuse of addresses (only hold address while connected/"on")
- support for mobile users who want to join network (more shortly)

DHCP overview:

- host broadcasts "DHCP discover" msg [optional]
- DHCP server responds with "DHCP offer" msg [optional]
- host requests IP address: "DHCP request" msg
- DHCP server sends address: "DHCP ack" msg

IP addressing: the last word...

Q: how does an ISP get block of addresses?

A: ICANN: Internet Corporation for Assigned

- Names and Numbers http://www.icann.org/
- allocates addresses
- manages DNS
- assigns domain names, resolves disputes

ICMP: internet control message protocol

- used by hosts & routers to communicate networklevel information
 - error reporting: unreachable host, network, port, protocol
 - echo request/reply (used by ping)
- * network-layer "above" IP:
 - ICMP msgs carried in IP datagrams
- ICMP message: type, code plus first 8 bytes of IP datagram causing error

Туре	<u>Code</u>	description
0	0	echo reply (ping)
3	0	dest. network unreachable
3	1	dest host unreachable
3	2	dest protocol unreachable
3	3	dest port unreachable
3	6	dest network unknown
3	7	dest host unknown
4	0	source quench (congestion
		control - not used)
8	0	echo request (ping)
9	0	route advertisement
10	0	router discovery
11	0	TTL expired
12	0	bad IP header

Traceroute and ICMP

- source sends series of UDP segments to dest
 - first set has TTL = I
 - second set has TTL=2, etc.
 - unlikely port number
- when *n*th set of datagrams arrives to nth router:
 - router discards datagrams
 - and sends source ICMP messages (type 11, code 0)
 - ICMP messages includes name of router & IP address

 when ICMP messages arrives, source records RTTs

stopping criteria:

- UDP segment eventually arrives at destination host
- destination returns ICMP "port unreachable" message (type 3, code 3)
- source stops

IPv6: motivation

- initial motivation: 32-bit address space soon to be completely allocated.
- additional motivation:
 - header format helps speed processing/forwarding
 - header changes to facilitate QoS

IPv6 datagram format:

- fixed-length 40 byte header
- no fragmentation allowed

IPv6 datagram format

priority: identify priority among datagrams in flow flow Label: identify datagrams in same "flow." (concept of "flow" not well defined). next header: identify upper layer protocol for data

ver	pri	flow label				
F	payload len next hdr hop limit					
	source address (128 bits)					
destination address (128 bits)						
data						

32 bits

Other changes from IPv4

- checksum: removed entirely to reduce processing time at each hop
- options: allowed, but outside of header, indicated by "Next Header" field
- ICMPv6: new version of ICMP
 - additional message types, e.g. "Packet Too Big"
 - multicast group management functions

Transition from IPv4 to IPv6

not all routers can be upgraded simultaneously

- no "flag days"
- how will network operate with mixed IPv4 and IPv6 routers?
- tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers

Tunneling

Tunneling

Network Layer 4-36

IPv6: adoption

US National Institutes of Standards estimate [2013]:

- ~3% of industry IP routers
- ~II% of US gov't routers
- Long (long!) time for deployment, use
 - 20 years and counting!
 - think of application-level changes in last 20 years: WWW, Facebook, ...
 - Why?

Interplay between routing, forwarding

Graph abstraction

graph: G = (N,E)

N = set of routers = { u, v, w, x, y, z }

 $E = set of links = \{ (u,v), (u,x), (v,x), (v,w), (x,w), (x,y), (w,y), (w,z), (y,z) \}$

aside: graph abstraction is useful in other network contexts, e.g., P2P, where *N* is set of peers and *E* is set of TCP connections

Graph abstraction: costs

c(x,x') = cost of link (x,x') e.g., c(w,z) = 5

cost could always be 1, or inversely related to bandwidth, or inversely related to congestion

cost of path
$$(x_1, x_2, x_3, ..., x_p) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{p-1}, x_p)$$

key question: what is the least-cost path between u and z ? routing algorithm: algorithm that finds that least cost path

Routing algorithm classification

Q: global or decentralized information?

global:

- all routers have complete topology, link cost info
- "link state" algorithms
 decentralized:
- router knows physicallyconnected neighbors, link costs to neighbors
- iterative process of computation, exchange of info with neighbors
- * "distance vector" algorithms

Q: static or dynamic?

static:

 routes change slowly over time

dynamic:

- routes change more quickly
 - periodic update
 - in response to link cost changes

A Link-State Routing Algorithm

Dijkstra's algorithm

- net topology, link costs known to all nodes
 - accomplished via "link state broadcast"
 - all nodes have same info
- computes least cost paths from one node ('source") to all other nodes
 - gives forwarding table for that node
- iterative: after k
 iterations, know least cost
 path to k dest.'s

notation:

- C(X,Y): link cost from node x to y; = ∞ if not direct neighbors
- D(v): current value of cost of path from source to dest. v
- p(v): predecessor node along path from source to v
- N': set of nodes whose least cost path definitively known

Dijsktra's Algorithm

1 Initialization:

- 2 $N' = \{u\}$
- 3 for all nodes v
- 4 if v adjacent to u

```
5 then D(v) = c(u,v)
```

```
6 else D(v) = \infty
```

7

8 **Loop**

- 9 find w not in N' such that D(w) is a minimum
- 10 add w to N'
- 11 update D(v) for all v adjacent to w and not in N':
- 12 D(v) = min(D(v), D(w) + c(w,v))
- 13 /* new cost to v is either old cost to v or known
- 14 shortest path cost to w plus cost from w to v */
- 15 until all nodes in N'

Dijkstra's algorithm: example

Ctor					D(y)	• •
Step	<u> N'</u>	p(v)	p(w)	p(x)	p(y)	p(z)
0	u	7,u	<u>3,u</u>	5 ,u	∞	∞
1	uw	6,w		<u>(5,u</u>) 11,w	∞
2 3	uwx	6,w	I		11,W	14,X
3	UWXV				10,V	14,X
4	uwxvy					(12,y)
5	uwxvyz					

notes:

- construct shortest path tree by tracing predecessor nodes
- ties can exist (can be broken arbitrarily)

Dijkstra's algorithm: another example

St	tep	N'	D(v),p(v)	D(w),p(w)	D(x),p(x)	D(y),p(y)	D(z),p(z)
	0	u	2,u	5,u	1,u	∞	∞
	1	ux 🔶	2,u	4,x		2,x	∞
	2	uxy	<u>2,u</u>	З,у			4,y
	3	uxyv 🖌					4,y
	4	uxyvw 🔶					4,y
	5	uxvvwz 🔶					

Dijkstra's algorithm: example (2)

resulting shortest-path tree from u:

resulting forwarding table in u:

destination	link		
V	(u,v)		
Х	(u,x)		
У	(u,x)		
W	(u,x)		
Z	(u,x)		

Bellman-Ford equation (dynamic programming)

let

 $d_x(y) := cost of least-cost path from x to y then$

 $d_{x}(y) = \min_{v} \{c(x,v) + d_{v}(y) \}$ cost from neighbor v to destination y cost to neighbor v min taken over all neighbors v of x

Bellman-Ford example

clearly, $d_v(z) = 5$, $d_x(z) = 3$, $d_w(z) = 3$ B-F equation says: $d_u(z) = \min \{ c(u,v) + d_v(z), c(u,x) + d_x(z), c(u,w) + d_w(z), c(u,w) + d_w(z) \}$ $= \min \{2 + 5, 1 + 3, 5 + 3\} = 4$

node achieving minimum is next hop in shortest path, used in forwarding table

- * $D_x(y)$ = estimate of least cost from x to y
 - x maintains distance vector $D_x = [D_x(y): y \in N]$
- node x:
 - knows cost to each neighbor v: c(x,v)
 - maintains its neighbors' distance vectors. For each neighbor v, x maintains
 D_v = [D_v(y): y ∈ N]

key idea:

- from time-to-time, each node sends its own distance vector estimate to neighbors
- when x receives new DV estimate from neighbor, it updates its own DV using B-F equation:

 $D_x(y) \leftarrow min_v \{c(x,v) + D_v(y)\}$ for each node $y \in N$

* under minor, natural conditions, the estimate $D_x(y)$ converge to the actual least cost $d_x(y)$

iterative, asynchronous:

each local iteration caused by:

- local link cost change
- DV update message from neighbor

distributed:

- each node notifies neighbors *only* when its DV changes
 - neighbors then notify their neighbors if necessary

each node:

Network Layer 4-53

Acknowledgment

- The copyright of most of the slides are for J.F Kurose and K.W. Ross
- We also have borrowed some materials from:
 - Hui Zhang, 15-441 Networking, School of computer science,CMU, Fall 2007